X
Расширенный поиск
Все разделы
Корзина
у вас нет товаров

Год ( По возрастанию | По убыванию )

Дифференциальные уравнения и теория устойчивости

Математический анализ реальности. Дифференциальные уравнения для школьников Земляков А.Н.

Математический анализ реальности. Дифференциальные уравнения для школьников

Земляков А.Н. Год: 2013
В книге приводятся многочисленные примеры математического моделирования реальной действительности, доступные для понимания и осознания на школьном уровне изучения математики. Книга предназначена для старшеклассников, выбирающих направление своего профессионального образования и склонных разобраться в том, какова действительная роль математики в науке и практике. Эта...
Аналитическая теория дифференциальных уравнений. Том 1 Ильяшенко Ю.С., Яковенко С.Ю.

Аналитическая теория дифференциальных уравнений. Том 1

Ильяшенко Ю.С., Яковенко С.Ю. Год: 2013
Предлагаемая книга—первый том двухтомной монографии, посвящённой аналитической теории дифференциальных уравнений. В первой части этого тома излагается формальная и аналитическая теория нормальных форм и теорема о разрешении особенностей для векторных полей на плоскости. Вторая часть посвящена алгебраически разрешимым локальным задачам теории аналитических дифференциальных...
Обыкновенные дифференциальные уравнения Лапин И.А., Ратафьева Л.С., Рябова А.В.

Обыкновенные дифференциальные уравнения

Лапин И.А., Ратафьева Л.С., Рябова А.В. Год: 2013
Предлагаемое учебное пособие является базовым конспектом лекций по высшей математике «Обыкновенные дифференциальные уравнения», для студентов 1 -го курса (второй семестр) дневного и вечернего отделений общеинженерных специальностей. В нём рассмотрены следующие темы: дифференциальные уравнения первого порядка и высших порядков, и методы их интегрирования линейные дифференциальные...
Аппроксимация вещественными и комплексными минимальными сплайнами Бурова И.Г.

Аппроксимация вещественными и комплексными минимальными сплайнами

Бурова И.Г. Год: 2013
Предлагаемое издание содержит теоретические и практические рекомендации по аппроксимации функций вещественными и комплексными сплайнами. Предлагаются неявные интерполяционные методы для решения задачи Коши. Предназначено для студентов, изучающих вычислительную математику, а также аспирантов и научных сотрудников, применяющих численные методы.
Линейные системы с квазидифференцируемыми коэффициентами: управляемость и наблюдаемость движений Астровский А.И., Гайшун И.В.

Линейные системы с квазидифференцируемыми коэффициентами: управляемость и наблюдаемость движений

Астровский А.И., Гайшун И.В. Год: 2013
В монографии дано систематическое применение техники квазидифференцирования в задачах наблюдения и управления линейных нестационарных систем обыкновенных дифференциальных уравнений, что привело к новым, более сильным по сравнению с известными, условиям наблюдаемости и управляемости, а также позволило разработать достаточно эффективные процедуры построения канонических...
Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические модели. Симметрия и принципы инвариантности Ибрагимов Н.Х.

Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические модели. Симметрия и принципы инвариантности

Ибрагимов Н.Х. Год: 2012. Издание: 2-е изд., доп. и испр.
Настоящий учебник охватывает обширный материал, включающий составление и анализ математических моделей различных процессов и явлений из области физики, техники, биологии, медицины и экономики. Рассматриваемые модели описываются обыкновенными дифференциальными уравнениями, уравнениями с частными производными и их системами. Излагаются классические и современные методы...
Дифференциальные уравнения. Практикум Альсевич Л.А., Мазаник С.А., Расолько Г.А., Черенкова Л.П.

Дифференциальные уравнения. Практикум

Альсевич Л.А., Мазаник С.А., Расолько Г.А., Черенкова Л.П. Год: 2012
Даны краткие теоретические сведения и решения типовых задач. Задачи повышенной сложности сопровождаются указаниями. Приведено большое количество задач прикладного характера, снабженных необходимыми сведениями из соответствующих областей физики, механики, биологии, экономики. Приведены задания для контрольных и лабораторных работ.
Геометрические методы в теории обыкновенных дифференциальных уравнений Арнольд В.И.

Геометрические методы в теории обыкновенных дифференциальных уравнений

Арнольд В.И. Год: 2012. Издание: 4-е изд.
В книге изложен ряд основных идей и методов, применяемых для исследованияобыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т.д.). Теорияуравненийс частнымипроизводными первогопорядка изложена на основе геометрии контактной...
Обыкновенные дифференциальные уравнения Арнольд В.И.

Обыкновенные дифференциальные уравнения

Арнольд В.И. Год: 2012
За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим.Большое внимание уделяется геометрическомусмыслу основных понятий. В книге прослеживается тесная связь предмета с приложениями, в особенности с механикой. При изложении делается упор не на формулы, а на геометрический смысл основных определений и теорем. Автор знакомит...
Управляемость асимптотических инвариантов нестационарных линейных систем Макаров Е.К., Попова С.Н.

Управляемость асимптотических инвариантов нестационарных линейных систем

Макаров Е.К., Попова С.Н. Год: 2012
Рассматривается задача управления асимптотическими инвариантами нестационарных линейных управляемых систем, удовлетворяющих условиям равномерной полной управляемости и/или равномерной согласованности. Исследуется вопрос о получении достаточных условий разрешимости этой задачи в ее различных постановках. Приводится полное решение проблемы глобальной управляемости показателей...
Дифференциальный усилитель Жуков А.А., Дейкова Г.М.

Дифференциальный усилитель

Жуков А.А., Дейкова Г.М. Год: 2012
Учебно-методическое пособие содержит описание лабораторной работы "Дифференциальный усилитель" по курсу "Схемотехника аналоговых электронных устройств". Пособие разработано для студентов третьего курса радиофизического факультета Томского государственного университета, обучающихся по специальности 210302.65 - РАДИОТЕХНИКА.
Многопараметрические задачи устойчивости Майлыбаев А.А., Сейранян А.П.

Многопараметрические задачи устойчивости

Майлыбаев А.А., Сейранян А.П. Год: 2010
В книге излагаются фундаментальные основы и методы много-параметрической теории устойчивости с приложениями к задачам механики. В ней отражены современные знания и достижения теории бифуркаций собственных значений, анализа чувствительности характеристик устойчивости, теории устойчивости неконсервативных систем, анализа особенностей границ областей устойчивости, изучены...
Линейные дифференциальные операторы Наймарк М.А.

Линейные дифференциальные операторы

Наймарк М.А. Год: 2010. Издание: 3-е изд.
Книга посвящена основам теории обыкновенных линейных дифференциальных операторов и некоторым ее приложениям. Она состоит из двух частей. В более элементарной первой части изложены: основные понятия и основные задачи теории дифференциальных операторов, асимптотическое поведение собственных значений и собственных функций и теоремы о разложении по собственным и присоединенным...
Дифференциальные уравнения: то решаем, то рисуем Аносов Д.В.

Дифференциальные уравнения: то решаем, то рисуем

Аносов Д.В. Год: 2010. Издание: 2-е изд. стер.
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других — как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых...
Методы интегрирования уравнений с частными производными Капцов О.В.

Методы интегрирования уравнений с частными производными

Капцов О.В. Год: 2009
В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных...
Лекции об уравнениях с частными производными Петровский И.Г.

Лекции об уравнениях с частными производными

Петровский И.Г. Год: 2009
Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические,...
Осцилляционный метод Штурма в спектральных задачах Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А.

Осцилляционный метод Штурма в спектральных задачах

Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А. Год: 2009
Книга посвящена изложению новых математических методов, развитых для доказательства осцилляционности спектра стилтьесовской струны. Главное направление развития классических методов — разработка математического анализа (на базе интеграла Стилтьеса) для функций с разрывным аргументом, аналогично — для функций с ветвящимся аргументом, определенных на геометрических графах....
Обыкновенные дифференциальные уравнения Треногин В.А.

Обыкновенные дифференциальные уравнения

Треногин В.А. Год: 2009
Книга содеpжит обновленный элементаpный начальный куpс обыкновенных диффеpенциальных уpавнений, соответствующий пpогpамме для технических вузов, утвеpжденной Министеpством образования и науки РФ. От дpугих книг этого же пpофиля данный учебник отличается повышенной пpикладной напpавленностью, в частности, применением компьютерных систем. Книга будет полезна студентам...
Лекции по теории обыкновенных дифференциальных уравнений Петровский И.Г.

Лекции по теории обыкновенных дифференциальных уравнений

Петровский И.Г. Год: 2009
Книга представляет собой учебник по курсу обыкновенных дифференциальных уравнений. Тщательно продуманное изложение дало возможность в небольшом объеме вместить обширный материал. Более детально и строго, чем в других руководствах, рассмотрены уравнения простых типов. Подробно изложены общие теоремы о разрешимости уравнений и систем уравнений с непрерывными правыми...
Последние просмотренные
Вверх