X
Расширенный поиск
Все разделы
Корзина
у вас нет товаров

Год ( По возрастанию | По убыванию )

Дифференциальные уравнения и теория устойчивости

Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические модели. Симметрия и принципы инвариантности Ибрагимов Н.Х.

Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические модели. Симметрия и принципы инвариантности

Ибрагимов Н.Х. Год: 2012. Издание: 2-е изд., доп. и испр.
Настоящий учебник охватывает обширный материал, включающий составление и анализ математических моделей различных процессов и явлений из области физики, техники, биологии, медицины и экономики. Рассматриваемые модели описываются обыкновенными дифференциальными уравнениями, уравнениями с частными производными и их системами. Излагаются классические и современные методы...
Дифференциальные уравнения. Практикум Альсевич Л.А., Мазаник С.А., Расолько Г.А., Черенкова Л.П.

Дифференциальные уравнения. Практикум

Альсевич Л.А., Мазаник С.А., Расолько Г.А., Черенкова Л.П. Год: 2012
Даны краткие теоретические сведения и решения типовых задач. Задачи повышенной сложности сопровождаются указаниями. Приведено большое количество задач прикладного характера, снабженных необходимыми сведениями из соответствующих областей физики, механики, биологии, экономики. Приведены задания для контрольных и лабораторных работ.
Геометрические методы в теории обыкновенных дифференциальных уравнений Арнольд В.И.

Геометрические методы в теории обыкновенных дифференциальных уравнений

Арнольд В.И. Год: 2012. Издание: 4-е изд.
В книге изложен ряд основных идей и методов, применяемых для исследованияобыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т.д.). Теорияуравненийс частнымипроизводными первогопорядка изложена на основе геометрии контактной...
Обыкновенные дифференциальные уравнения Арнольд В.И.

Обыкновенные дифференциальные уравнения

Арнольд В.И. Год: 2012
За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим.Большое внимание уделяется геометрическомусмыслу основных понятий. В книге прослеживается тесная связь предмета с приложениями, в особенности с механикой. При изложении делается упор не на формулы, а на геометрический смысл основных определений и теорем. Автор знакомит...
Управляемость асимптотических инвариантов нестационарных линейных систем Макаров Е.К., Попова С.Н.

Управляемость асимптотических инвариантов нестационарных линейных систем

Макаров Е.К., Попова С.Н. Год: 2012
Рассматривается задача управления асимптотическими инвариантами нестационарных линейных управляемых систем, удовлетворяющих условиям равномерной полной управляемости и/или равномерной согласованности. Исследуется вопрос о получении достаточных условий разрешимости этой задачи в ее различных постановках. Приводится полное решение проблемы глобальной управляемости показателей...
Дифференциальный усилитель Жуков А.А., Дейкова Г.М.

Дифференциальный усилитель

Жуков А.А., Дейкова Г.М. Год: 2012
Учебно-методическое пособие содержит описание лабораторной работы "Дифференциальный усилитель" по курсу "Схемотехника аналоговых электронных устройств". Пособие разработано для студентов третьего курса радиофизического факультета Томского государственного университета, обучающихся по специальности 210302.65 - РАДИОТЕХНИКА.
Многопараметрические задачи устойчивости Майлыбаев А.А., Сейранян А.П.

Многопараметрические задачи устойчивости

Майлыбаев А.А., Сейранян А.П. Год: 2010
В книге излагаются фундаментальные основы и методы много-параметрической теории устойчивости с приложениями к задачам механики. В ней отражены современные знания и достижения теории бифуркаций собственных значений, анализа чувствительности характеристик устойчивости, теории устойчивости неконсервативных систем, анализа особенностей границ областей устойчивости, изучены...
Линейные дифференциальные операторы Наймарк М.А.

Линейные дифференциальные операторы

Наймарк М.А. Год: 2010. Издание: 3-е изд.
Книга посвящена основам теории обыкновенных линейных дифференциальных операторов и некоторым ее приложениям. Она состоит из двух частей. В более элементарной первой части изложены: основные понятия и основные задачи теории дифференциальных операторов, асимптотическое поведение собственных значений и собственных функций и теоремы о разложении по собственным и присоединенным...
Дифференциальные уравнения: то решаем, то рисуем Аносов Д.В.

Дифференциальные уравнения: то решаем, то рисуем

Аносов Д.В. Год: 2010. Издание: 2-е изд. стер.
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других — как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых...
Методы интегрирования уравнений с частными производными Капцов О.В.

Методы интегрирования уравнений с частными производными

Капцов О.В. Год: 2009
В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных...
Лекции об уравнениях с частными производными Петровский И.Г.

Лекции об уравнениях с частными производными

Петровский И.Г. Год: 2009
Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические,...
Осцилляционный метод Штурма в спектральных задачах Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А.

Осцилляционный метод Штурма в спектральных задачах

Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А. Год: 2009
Книга посвящена изложению новых математических методов, развитых для доказательства осцилляционности спектра стилтьесовской струны. Главное направление развития классических методов — разработка математического анализа (на базе интеграла Стилтьеса) для функций с разрывным аргументом, аналогично — для функций с ветвящимся аргументом, определенных на геометрических графах....
Обыкновенные дифференциальные уравнения Треногин В.А.

Обыкновенные дифференциальные уравнения

Треногин В.А. Год: 2009
Книга содеpжит обновленный элементаpный начальный куpс обыкновенных диффеpенциальных уpавнений, соответствующий пpогpамме для технических вузов, утвеpжденной Министеpством образования и науки РФ. От дpугих книг этого же пpофиля данный учебник отличается повышенной пpикладной напpавленностью, в частности, применением компьютерных систем. Книга будет полезна студентам...
Лекции по теории обыкновенных дифференциальных уравнений Петровский И.Г.

Лекции по теории обыкновенных дифференциальных уравнений

Петровский И.Г. Год: 2009
Книга представляет собой учебник по курсу обыкновенных дифференциальных уравнений. Тщательно продуманное изложение дало возможность в небольшом объеме вместить обширный материал. Более детально и строго, чем в других руководствах, рассмотрены уравнения простых типов. Подробно изложены общие теоремы о разрешимости уравнений и систем уравнений с непрерывными правыми...
Особенности дифференцируемых отображений Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М.

Особенности дифференцируемых отображений

Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М. Год: 2009. Издание: 3-е изд. стер.
Теория особенностей дифференцируемых отображений — бурно развивающаяся область современной математики, являющаяся грандиозным обобщением исследования функций на максимум и минимум и имеющая многочисленные приложения в математике, естествознании и технике (так называемые теории бифуркаций и катастроф). Первая часть книги посвящена теории устойчивости гладких отображений,...
Обратные задачи монодромии в аналитической теории дифференциальных уравнений Болибрух А.А.

Обратные задачи монодромии в аналитической теории дифференциальных уравнений

Болибрух А.А. Год: 2009
В лекциях начала аналитической теории дифференциальных уравнений излагаются с точки зрения расслоений с мероморфными связностями на римановой сфере. Этот подход позволяет добиться значительного прогресса в решении таких знаменитых старых задач, как проблема Римана–Гильберта и задача о биркгофовой стандартной форме, а также в исследовании изомонодромных деформаций фуксовых...
Теорема Коши и особые решения дифференциальных уравнений Егоров А.И.

Теорема Коши и особые решения дифференциальных уравнений

Егоров А.И. Год: 2008
Рассматриваются проблемы существования и единственности решений обыкновенных дифференциальных уравнений и уравнений с частными производными первого порядка, а также вопросы существования и практического построения особых решений таких уравнений. Анализ проблем начинается с обзора основных следствий теоремы Коши и завершается кратким изложением теории уравнений Каратеодори,...
Практикум. Дифференциальные уравнения. В 2 частях. Часть 1. Дифференциальные уравнения первого порядка и приводящиеся к ним Веденяпин А.Д., Поливенко В.К.

Практикум. Дифференциальные уравнения. В 2 частях. Часть 1. Дифференциальные уравнения первого порядка и приводящиеся к ним

Веденяпин А.Д., Поливенко В.К. Год: 2008
Настоящий практикум содержит общие задания и методические указания к их выполнению в объеме программы по обыкновенным дифференциальным уравнениям университетов и технических вузов. Может служить руководством для преподавателей, ведущих практические и лабораторные занятия, а также для самостоятельного изучения студентом. Допущено Научно-методическим советом по математике...
Линейные и нелинейные уравнения соболевского типа Свешников А.Г., Альшин А.Б., Корпусов М.О., Плетнер Ю.Д.

Линейные и нелинейные уравнения соболевского типа

Свешников А.Г., Альшин А.Б., Корпусов М.О., Плетнер Ю.Д. Год: 2007
Рассматриваются проблемы глобальной и локальной разрешимости как в классическом так и в сильном и слабом обобщенном смыслах широких классов задач Коши и начально-краевых задач для линейных и нелинейных уравнений в частных производных высоких порядков, включая псевдопараболические уравнения и уравнения соболевского типа. В случае локальной разрешимости для ряда классов...
Вверх