Год ( По возрастанию | По убыванию )
Дифференциальные уравнения и теория устойчивости
Уравнение Смолуховского
Изложена теория корректности задач для уравнения Смолуховского, моделирующего процессы коагуляции (слияния) частиц в дисперсных системах. Рассмотрены пространственно однородные и неоднородные задачи. Доказаны теоремы глобальной разрешимости и корректности задач Коши. Описываются эффекты перехода соотношения сохранения в соотношение диссипации и выявляются их связь...
Справочник по обыкновенным дифференциальным уравнениям
Справочник содержит около 5200 обыкновенных дифференциальных уравнений с решениями (больше, чем любая другая книга). Особое внимание уделяется унавнениям общего вида , которые зависят от производных функций. Приведены некоторые точные решения уравнений нелинейной механики и теоретической физики (которые встречаются в задачах теплопроводности, массопереноса, теории...
Дифференциальные уравнения
Один из выпусков "Курса высшей математики и математической физики" под редакцией А.Н. Тихонова, З.А. Ильина, А.Г. Свешникова. Учебник создан на базе лекций, читавшихся авторами в течение многих лет на физическом факультете Московского государственного университета. Изложение отвечает современному состоянию теории дифференциальных уравнений в той мере, как это требуется...
Нелинейный анализ и нелинейные дифференциальные уравнения
Книга содеpжит обзоpные и оpигинальные статьи pяда pоссийских ученых, активно pаботающих в области нелинейной математики и ее пpиложений. Излагаются вопpосы теоpии ветвления и бифуpкаций, теоpии диффеpенциальных и функционально-диффеpенциальных уpавнений, теоpии устойчивости и теоpии некоppектных задач, а также дpугие вопpосы. Для математиков, для аспиpантов и студентов...
Динамика стохастических систем: Курс лекций
В книге на основе функционального подхода формулируются общие методы статистического описания и анализа стохастических динамических систем с флуктуирующими параметрами, описываемых обыкновенными дифференциальными уравнениями, уравнениями в частных производных, краевыми задачами и интегральными уравнениями. Рассматриваются также асимптотические методы анализа стохастических...
Дифференциальные уравнения на геометрических графах
В книге изучаются качественные свойства дифференциальных уравнений на многообразиях типа сети. Излагаемая теория является новой - первые результаты в этом направлении появились лишь около 20 лет назад и систематическим образом ранее не описывались. Приводятся основные постановки задач, строится аналог теории неосцилляции и изучаются функция Грина, дифференциальные...
Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах
Пособие охватывает все разделы курсов «Дифференциальные и интегральные уравнения. Вариационное исчисление». По каждой теме кратко излагаются основные теоретические сведения приводятся решения стандартных и нестандартных задач даются задачи с ответами для самостоятельной работы.
Для студентов вузов, обучающихся по специальностям «Физика» и «Прикладная математика».
Введение в теорию обратных спектральных задач
В книге рассматривается современное состояние теории обратных задач спектрального анализа для обыкновенных дифференциальных уравнений. Представлены основные результаты и методы решения обратных задач как для уравнения Штурма-Лиувилля, так и для дифференциальных уравнений высших порядков и систем дифференциальных уравнений. Материал книги представляет собой переработанное...
Обобщенные решения законов сохранения
Книга посвящена теории квазилинейных систем дифференциальных уравнений, описывающих законы сохранения различных физических процессов с учетом диссипации и без нее. В основе ее лежит специальныйкурс лекций«Обоб щенные решения законов сохранения», читавшийся автором на протяжении ряда лет студентам специальности «Прикладная математика» в Обнинском государственном университете...
Линейные и нелинейные уравнения соболевского типа
Рассматриваются проблемы глобальной и локальной разрешимости как в классическом так и в сильном и слабом обобщенном смыслах широких классов задач Коши и начально-краевых задач для линейных и нелинейных уравнений в частных производных высоких порядков, включая псевдопараболические уравнения и уравнения соболевского типа. В случае локальной разрешимости для ряда классов...
Обыкновенные дифференциальные уравнения с приложениями
Рассматриваются основные направления теории обыкновенных дифференциальных уравнений и практические методы решения таких уравнений. Значительная часть книги содержит стандартный учебный материал по курсу обыкновенных дифференциальных уравнений. Кроме того, рассматриваются матричные дифференциальные уравнения, основы теории устойчивости по Ляпунову, основы теории периодических...
Дифференциальные уравнения и экономические модели
Изложены необходимые основы математического аппарата теории дифференциальных, линейных разностных уравнений и систем и даны примеры его использования в современных экономических приложениях. Представлены решения большого количества типичных задач, дана подборка задач для самостоятельного решения.
Теорема Коши и особые решения дифференциальных уравнений
Рассматриваются проблемы существования и единственности решений обыкновенных дифференциальных уравнений и уравнений с частными производными первого порядка, а также вопросы существования и практического построения особых решений таких уравнений. Анализ проблем начинается с обзора основных следствий теоремы Коши и завершается кратким изложением теории уравнений Каратеодори,...
Практикум. Дифференциальные уравнения. В 2 частях. Часть 1. Дифференциальные уравнения первого порядка и приводящиеся к ним
Настоящий практикум содержит общие задания и методические указания к их выполнению в объеме программы по обыкновенным дифференциальным уравнениям университетов и технических вузов. Может служить руководством для преподавателей, ведущих практические и лабораторные занятия, а также для самостоятельного изучения студентом. Допущено Научно-методическим советом по математике...
Методы интегрирования уравнений с частными производными
В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных...
Лекции об уравнениях с частными производными
Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические,...
Осцилляционный метод Штурма в спектральных задачах
Книга посвящена изложению новых математических методов, развитых для доказательства осцилляционности спектра стилтьесовской струны. Главное направление развития классических методов — разработка математического анализа (на базе интеграла Стилтьеса) для функций с разрывным аргументом, аналогично — для функций с ветвящимся аргументом, определенных на геометрических графах....
Обыкновенные дифференциальные уравнения
Книга содеpжит обновленный элементаpный начальный куpс обыкновенных диффеpенциальных уpавнений, соответствующий пpогpамме для технических вузов, утвеpжденной Министеpством образования и науки РФ. От дpугих книг этого же пpофиля данный учебник отличается повышенной пpикладной напpавленностью, в частности, применением компьютерных систем. Книга будет полезна студентам...
Вверх