Введение. Уровень технологической оснащенности и качество расстановки оборудования на участках предприятий технического сервиса оказывает значительное влияние на величину площадей производственных участков и эффективность путей перемещения объектов технического сервиса. Цель работы - оценить фактический уровень оснащенности и качество расстановки технологического оборудования на конкретных производственных участках предприятий. Материалы и методы. Качество расстановки оборудования на предприятиях определяется на основании сравнения фактического и нормативного значений коэффициента, учитывающего рабочие места, проезды и проходы на конкретных производственных участках. В процессе исследования предложен метод определения уровня технологической оснащенности участков на основании физического износа технологического оборудования и коэффициента плотности расстановки. Результаты исследования. На 80 % участков не соблюдаются основные нормы технологического проектирования. Фактическое значение коэффициента плотности расстановки оборудования на конкретных участках составляет 1,1-42,8. При этом среднее значение коэффициента составило 12,5 для предприятий с парком менее 25 тракторов, 10,2 для предприятий с парком от 25 до 50 тракторов и 8,6 для предприятий с парком более 50 тракторов. Доля участков с высокой плотностью расстановки оборудования составила 13,3 %, со средней 40,0 % и с низкой 46,7 %. Коэффициенты, наиболее близкие к нормативным значениям, выявлены на участках ремонта гидравлической системы и масляной аппаратуры, полимерном и окраски и сушки. А на таких основных участках, как слесарно-механический, кузнечный, сварочно-наплавочный и др., значения коэффициента плотности расстановки оборудования отличаются от нормативных значений в несколько раз. Обсуждение и заключение. Проведенные исследования показали низкий уровень технологической оснащенности большинства производственных участков предприятий в Приволжском федеральном округе. Результаты исследования позволят в будущем оптимизировать величины площадей производственных участков и обеспечить эффективность путей перемещения техники внутри корпусов.
Инженерные технологии и системы
2022. — Выпуск 3
Содержание:
Введение. При уборке льна-долгунца рабочие органы активно взаимодействуют с растениями. Для льнотеребильного аппарата с поперечными ленточно-дисковыми ручьями характерно разделение технологических потоков растений, приводящее к потерям семян и повреждениям стеблей. Цель работы - теоретическое и экспериментальное обоснование изменений конструкции теребильного аппарата с поперечными ленточно-дисковыми ручьями за счет исключения разделения технологических потоков растений при их тереблении. Материалы и методы. Экспериментальные исследования по обоснованию параметров и режимов работы теребильного аппарата проводили по имеющимся и разработанным методикам, а оценку льнопродукции - по действующим ГОСТам. Определялось влияние фаз спелости и урожайности льна, а также типа теребильного аппарата на показатели разделения технологических потоков растений и потерь семян. Устанавливали влияние типа теребильного аппарата, ширины захвата теребильной секции и скорости агрегата на показатели переработки льнотресты. Результаты исследования. Получена зависимость для определения комлевой растянутости стеблей с учетом сцепления семенными коробочками. Конструкцию модернизированного теребильного аппарата использовали для того, чтобы оценить, как уменьшение растянутости и устранение разделения технологических потоков растений при тереблении влияет на снижение потерь семян и повышение выхода длинного волокна. В усовершенствованной машине элементы рамы расположены за теребильным аппаратом. Благодаря модернизации теребильного аппарата льнотреста имела более высокие показатели качества: 1,5 номера у ТЛН-1,9М и 1,25 номера у ТЛН-1,9П. Обсуждение и заключение. Модернизированный теребильный аппарат ТЛН-1,9М при уборке посевов в фазе ранней желтой спелости, по сравнению с аппаратом ТЛН-1,9П, позволяет снизить потери семян на 1,4-2,0 %, на 1,3 % возрастает выработка длинного волокна и увеличивается на 0,45 его номер.
Ключевые слова
Введение. Альтернативные топлива в двигателях внутреннего сгорания позволяют не только снизить вредное воздействие отработавших газов на окружающую среду без применения дорогостоящих систем очистки, но и диверсифицировать рынок топлива, сокращая потребление невозобновляемых источников энергии, а научные исследования, направленные на применение альтернативных топлив, позволяют выявить наиболее оптимальные варианты замены невозобновляемому сырью. Цель исследования - изучить, как добавление этанола в штатный тракторный дизель с объемным смесеобразованием и сгоранием от факела запального рапсового масла влияет на работу двигателя, а также оптимизировать раздельные цикловые подачи для получения максимального энергетического и экологического эффекта. Материалы и методы. Статья посвящена описанию результатов применения рапсового масла и этанола в серийном тракторном дизеле размерности 2Ч 10,5/12,0 с организацией раздельного впрыска топлива непосредственно в камеру сгорания. В ходе экспериментальных исследований проведены индицирование рабочего процесса, измерения расхода топлива и потребления воздуха, отбор проб отработавших газов для исследования состава газа и определения содержания токсичных компонентов и дымности. Результаты исследования. Определена точная цикловая подача этанола и рапсового масла, получены величины среднего эффективного давления, осредненной температуры газов в цилиндре, активного и полного тепловыделения. Показано, что с увеличением цикловой подачи этанола доля тепла от кинетического сгорания возрастает, а для дизельного процесса характерна обратная тенденция - увеличение доли диффузионного сгорания с ростом нагрузки. Проведен анализ внутрицилиндровых процессов при работе на этаноле и рапсовом масле в сопоставлении с традиционным дизельным процессом. Обсуждение и заключение. Применение рапсового масла и этанола способно полностью заместить традиционное топливо нефтяного происхождения для действующего дизельного двигателя путем установки дополнительного топливного оборудования и модификации головки блока цилиндров (монтаж дополнительной форсунки). При этом существенно улучшаются экологические показатели работы дизеля.
Ключевые слова
Введение. Актуальность исследования степных фитоценозов обусловлена неудовлетворительным состоянием природных травостоев: низким биоразнообразием и высокой степенью деградации. Цель работы - установить особенности связи данных дистанционного зондирования Земли с состоянием и степенью деградации естественных травостоев в различных почвенно-климатических зонах Ставропольского края. Данные дистанционного зондирования Земли с определенными временными и пространственными разрешениями позволяют осуществлять практически непрерывный мониторинг состояния природных травостоев. Материалы и методы. Изучение степных фитоценозов осуществлялось в 2016-2020 гг. наземно на учетных площадках (100 м²) согласно требованиям методик, общепринятых в фитоценологии. Оценка состояния растительности производилась с использованием данных дистанционного зондирования Земли по значениям нормализованного относительного вегетационного индекса. По данным спутника построены картограммы нормализованного относительного вегетационного индекса для каждого пункта исследования. Результаты исследования. Из числа объектов исследования, расположенных в зоне неустойчивого увлажнения, доля полигонов с сильной степенью деградации составляет 18,8 %, со средней степенью деградации 37,5 %, а в засушливой зоне 70,6 и 23,5 % соответственно. В зоне неустойчивого увлажнения наиболее высокие коэффициенты ранговой корреляции между степенью деградации и площадью, занимаемой травянистой растительностью с определенным значением вегетационного индекса, наблюдаются в случае с нормализованным относительным вегетационным индексом, находящимся в пределах 0,0-0,4, а в засушливой 0,0-0,3 (при уровне значимости 0,01). Обсуждение и заключение. При использовании данных дистанционного зондирования Земли для оценки степени деградации степных экосистем Ставропольского края необходимо использовать специфические для различных почвенно-климатических условий регрессионные модели.
Ключевые слова
Введение. Задача определения оптимальных режимных параметров при математическом моделировании химико-технологических процессов является важнейшей задачей. Численные методы и алгоритмы решения создают основу для разработки программных комплексов для расчета процессов и их цифровых двойников. Математическую модель химико-технологического процесса можно описать системой дифференциальных уравнений, выделив фазовые переменные, определяющие состояние процесса, и параметры управления, которые можно изменять и влиять тем самым на течение процесса. Целью работы является разработка численного алгоритма решения задачи оптимального управления химико-технологическим процессом при наличии терминальных ограничений и ограничений на параметр управления. Материалы и методы. Сформулирована задача оптимального управления в общем виде. Для ее решения применены метод штрафов и метод искусственных иммунных систем. Описан способ включения ограничений в функцию штрафа и выбора последовательности коэффициентов, с которыми берется штраф. Для преодоления локальных экстремумов использован случайный выбор начальных значений управляющих параметров. Результаты исследования. Приведен пошаговый численный алгоритм решения задачи оптимального управления химико-технологическим процессом с терминальными ограничениями. Проведен вычислительный эксперимент для модельного примера, в результате которого определена структура оптимального управления процессом и соответствующие оптимальные траектории фазовых переменных. Показано, что рассчитанное решение задачи оптимального управления согласуется с решением, полученным методом игольчатой линеаризации. Обсуждение и заключение. Разработанный алгоритм позволяет найти численное решение задачи оптимального управления химико-технологическим процессом с терминальными ограничениями. Решение не зависит от выбора начального приближения.
Ключевые слова
Введение. Медный пеноматериал обладает рядом преимуществ. Доказано, что он улучшает теплопередачу при кипении, но увеличивает энергозатраты насоса. Рифленая медная пена позволит достичь оптимального баланса между характеристиками теплопередачи при кипении и потребляемой мощностью насоса. Материалы и методы. Исследован обычный медный пеноматериал и рифленый. Технические характеристики медного пеноматериала представлены комбинациями с пористостью 70, 80 и 90 % и плотностью пор 90 и 110 PPI. Рифленый медный материал имеет 11 и 17 канавок. Соответственно, ширина ребер составляет 2 и 1 мм при глубине канавок 2,9 мм и ширине 0,6 мм. Экспериментальная установка проточного кипения воды в слое пеноматериала состоит из четырех частей: резервуар для нагреваемой воды, насос, испытательная секция и система сбора данных. В испытательной секции жидкая вода превращается в пар и отводит тепло от поверхности медного блока, а затем пар конденсируется в жидкую воду в конечном резервуаре. Результаты исследования. Образцы рифленого медного пеноматериала показали более высокую эффективность, чем образцы обычного. Медный рифленый пеноматериал может повысить критический тепловой поток и коэффициент теплопередачи по сравнению с обычным пеноматериалом. Образцы с 17 канавками показали более высокие показатели, чем образцы с 11 канавками. Визуальное наблюдение показало, что при умеренном и высоком тепловом потоке для рифленого медного пеноматериала с открытыми порами преобладает сложная структура потока. Масса пузырьков пара лучше формировалась над образцами с 17 канавками по сравнению с образцами с 11 канавками. Следовательно, в образце с 17 канавками более интенсивное кипение. Обсуждение и заключение. Количество канавок оказывает существенное влияние на теплопередачу при кипении. Образцы медного рифленого пеноматериала обладают более высоким коэффициентом теплопередачи и критическим тепловым потоком. Структурные параметры, такие как пористость и плотность, оказывают второстепенное влияние на теплопередачу. Визуальное наблюдение показывает, что осуществляется циклическое чередование режимов потока: пузырьковый поток, кольцевой поток и массовое образование пара для образцов с канавками. Большая масса пара образуется на образцах с 17 канавками из-за более интенсивного кипения.
Ключевые слова
Введение. Проблема определения координат поезда на участке приближения к переезду сопряжена с воздействием дестабилизирующих факторов на первичный датчик информации - рельсовую линию с распределенными параметрами. Это приводит к ошибке вычисления координат поезда. Цель исследования - разработка и научное обоснование принципа построения системы вычисления координат поезда с самонастройкой решающей функции в условиях воздействия значительных дестабилизирующих факторов на первичный датчик информации. Материалы и методы. Для решения задачи достоверного определения координат поезда в работе предложен двухфазный принцип формирования решающей функции. На первом этапе с помощью обучающей выборки образов, используя принцип обучения, определяется решающая функция (модель) системы вычисления координат поезда. При вступлении поезда на участок приближения фиксированной длины определяется рассогласование сравнением вычисленной координаты с фиксированной. Далее наступает второй этап - самонастройка коэффициентов решающей функции до достижения требуемой точности. Результаты исследования. В статье показаны этапы формирования решающей функции двумерными образами, а также разработан и апробирован алгоритм самонастройки решающей функции при воздействии различных дестабилизирующих факторов. С использованием 6 признаков, составляющих векторов тока и напряжения на входе рельсовой линии, получены 6 решающих функций. В качестве аргументов полиномов в них использованы различные сочетания двумерных образов. Обсуждение и заключение. Результаты исследований подтверждают реализуемость формирования решающей функции и ее самонастройки. Максимальная ошибка вычисления координат у различных сочетаний составляет от 9,97 % (199,34 м) до 4,57 % (91,49 м). Ошибка определения с погрешностью не более 5 % у двух решающих функций удовлетворяет требованиям заблаговременного закрытия переезда, так как в 45-секундном интервале времени для приведения в действие автоматической переездной сигнализации расстояние 100 м преодолевается за 3 секунды, то есть затраченное время составляет всего 3 секунды в 45-секундном интервале.
Ключевые слова
Введение. Применение цифровых технологий позволит увеличить эффективность животноводства. К таким технологиям можно отнести оптический мониторинг качества продукции. Цель исследования - изучение зависимости спектральных характеристик и параметров возбуждения и люминесценции молока при скисании. Материалы и методы. Для измерений использовали молоко с жирностью 3,2 %. Кислотность контролировали титриметрическим методом. Спектры возбуждения и регистрации люминесценции измеряли на спектрофлуориметре «Флюорат-02-Панорама» в диапазоне 200-500 нм. Вычисляли интегральные и статистические параметры спектров в программах PanoramaPro и Microcal Origin. Результаты исследования. При скисании молока спектры возбуждения смещаются вниз, при этом в диапазоне 350-500 нм наблюдается качественное изменение характеристик, хотя абсолютный уровень фотосигнала почти на порядок меньше, чем при 220-340 нм. Поток фотолюминесценции при возбуждении излучением с длиной волны 262 нм уменьшается в процессе скисания. Поток при возбуждении излучением 385 нм, наоборот, увеличивается, особенно за первые трое суток. Поток при возбуждении 442 нм уменьшается незначительно. Статистические параметры и энергия спектров фотолюминесценции неинформативны для контроля скисания молока. Зависимость отношения потоков фотолюминесценции при возбуждении излучением 385 и 442 нм от кислотности линейно аппроксимируется с коэффициентом детерминации 0,99. Обсуждение и заключение. Изменение люминесцентных свойств молока можно использовать как маркер его скисания с контролем кислотности. Для создания метода контроля показателей качества молока при скисании наиболее информативным является использование длин волн возбуждения 385 и 442 нм с последующей регистрацией фотолюминесценции в диапазонах 440-490 и 490-600 нм соответственно.