Введение. Классическая оптимизация топологии приводит к прогнозированию структурного типа и общей компоновки и дает приблизительное описание формы внешних, а также внутренних границ структуры. Однако модель оптимизации топологии на основе надежности (RBTO) создает несколько топологий с высоким уровнем производительности. Целью данной работы является изучение влияния изменений надежности на полученные топологии. Материалы и методы. Разработанный градиентный метод (GBM) эффективно используется в качестве общего метода для нескольких приложений (статики и динамики). При рассмотрении нескольких уровней надежности можно получить несколько топологий. Для их сравнения оптимизация формы рассматривается как аспект детального проектирования. Результаты исследования. Расчеты балки, подверженной распределенной нагрузке, выполнялись с помощью вычислительного приложения на MBB (Messerschmitt-Bolkow-Blohm). DTO-модель внесена без рассмотрения принципиальной схемы надежности. Однако для RBTO-модели учитывался интервал надежности, который произвел несколько топологий. Здесь случайность применяется к геометрии и параметрам материала. Применение алгоритма оптимизации формы приводит к уменьшению структурных объемов при повышении уровня надежности. Обсуждение и заключение. Помимо упрощенной реализации, разработанная стратегия GBM может рассматриваться как генеративный инструмент для предоставления проектировщику нескольких решений. Оптимизация формы рассматривается как численная проверка важности различных результирующих макетов RBTO.
Инженерные технологии и системы
2019. — Выпуск 3
Содержание:
Введение. Автоматизация получения конструкторских параметров обрабатываемой детали является одним из этапов интеграции конструкторских систем автоматизированного проектирования с системами технологической подготовки производства. Целью данной работы является получение параметров детали, значения которых могут использоваться в составе информационных связей, реализуемых с применением технологической параметризации. Материалы и методы. Работа является развитием концепции сквозной конструк-торско-технологической параметризации применительно к автоматизированному программированию станков с числовым программным управлением. В основе теоретических исследований лежат формальная теория представления и обработки данных, теория множеств, теория иерархических многоуровневых систем. Программная реализация выполнена в среде Visual Studio C++ с использованием интерфейсов прикладного программирования KOMTJAC-3D и геометрического ядра C3D. Результаты исследования. Разработан способ получения исходных параметров обрабатываемой детали при передаче информации из конструкторских систем автоматизированного проектирования в системы технологической подготовки производства. Приведена логическая структура данных в реляционной форме, которая позволяет исключить избыточность и обеспечить непротиворечивость представления параметров детали с учетом приоритетов источников данных, связанных с конструкторской 3D-моделью. Способ программного реализован в составе коммерческой системы автоматизированного программирования станков с числовым программным управлением для платформы КOMПАC-3D. Исходные параметры (метаданные, свойства материала, параметры аннотаций, параметрические переменные) извлекаются из 3D-модели с использованием прикладного программного интерфейса. Для получения свойств материала реализована интеграция со справочником материалов системы КOMПАC-3D. Обсуждение и заключение. Автоматизация подготовки исходной информации о детали является первым этапом в реализации сквозной параметризации в задачах конструкторского и технологического проектирования. Благодаря конструкторско-технологической параметризации и ассоциативности траекторий обработки можно построить сквозное проектное решение, когда изменения, внесенные конструктором в деталь, будут автоматически передаваться в технологическую модель и далее через постпроцессор в управляющую программу для станка с числовым программным управлением. Сквозную параметризацию наиболее эффективно использовать для деталей, имеющих несколько размерных модификаций. Дальнейшее развитие конструкторско-технологической параметризации в составе интегрированной системы автоматизированного программирования станков с программным управлением планируется направить на решение задач автоматического подбора режущих инструментов и приспособлений на основе алгоритмов, реализуемых пользователями посредством параметрических информационных связей.
Ключевые слова
Введение. В последнее время все чаще рассматривается вопрос о децентрализованном (автономном) энергообеспечении ряда нагрузок сельских территорий. Децентрализованное энергоснабжение возможно от различных генераторов энергии небольшой мощности с использованием местных и возобновляемых источников энергии. В этом случае у потребителя возникает задача выбора генерирующего источника. Материалы и методы. Aнализ потребителей энергии, режимы работы оборудования, графики нагрузок определены по результатам энергетических обследований, проводимых институтом с 2003 года по настоящее время. Комплексный показатель негативного воздействия производства тепло- и электроэнергии на окружающую среду определен методом логико-лингвистического моделирования Спесивцева -Дроздова на основе экспертных оценок. Результаты исследования. Энергоисточники могут быть как традиционными (дизель-генераторы и газопоршневые установки), так и возобновляемыми (ветроу-становки, солнечные коллекторы, мини-ГЭС). При выборе источника энергии учитывается критерий отбора: экономия или экологичность. Экономический критерий - стоимость кВт-ч энергии. Экологический критерий - суммарный выброс загрязняющих веществ при получении энергии (г/кВт-ч) на различных источниках энергоснабжения. Причем учитывается не только количество выбросов, но и вредное воздействие на окружающую среду. Обсуждение и заключение. При выборе источников энергоснабжения предлагается пользоваться коэффициентом энергоэкологичности, который представляет произведение стоимости кВт-ч полученной энергии на объем удельных выбросов загрязняющих веществ. Oптимальное значение этого коэффициента при выборе генерирующего источника - наименьшее. Коэффициент энергоэкологичности учитывает одновременно экономическую и экологическую целесообразность при выборе генерирующих источников энергии.
Ключевые слова
Введение. Создание и развитие эффективных аграрных комплексов, обеспечивающих высокую урожайность при минимальных временных, материальных и энергетических затратах, невозможно без применения систем автоматического управления (САУ), позволяющих с высокой точностью поддерживать микроклимат тегшицы. Усовершенствования САУ микроклимата направлены на нейтрализацию влияния параметрических возмущений процессов внутри и вне теплицы. На примере канала регулирования температуры в теплице с контуром отопления на основе горячего трубного водоснабжения предложен адаптивный итерационный (поисковый) алгоритм подстройки составляющих пропорционального-интегрального-дифференциального (ПИД) регулятора в контуре отопления для обеспечения требуемого качества процесса регулирования. Материалы и методы. За основу синтеза управления принята параметрически неопределенная модель температуры в теплице, структура которой на основе принципа суперпозиции преобразована к виду с сосредоточенными на выходную координату управлением и возмущениями. Применение адаптивного ПИД-регулятора основано на анализе базы данных реального времени, содержащей тренды управляемого процесса. Используя операторы языка системы управления базами данных или SQL-запросы, оценивается качество регулирования. По оценке качества корректируются пропорциональная и дифференциальная составляющая ПИД-регулятора так, чтобы система управления работала на грани перехода в режим автоколебаний. Возникающая статическая ошибка компенсируется изменением задающего воздействия. Результаты исследования. Проведено моделирование в программном комплексе МВТУ (SimInTech) реальной структуры одноконтурной САУ температурой в теплице с включенными регулирующим, исполнительным и измерительным элементами, а также при наличии запаздывания в движении теплоносителя. Показано, что предлагаемый алгоритм адаптации, заключающийся в аддитивной подстройке коэффициентов ПИД-регулятора, удобно реализуемый в SCADA-системе, обеспечивает минимальное колебательное поддержание температуры при произвольных параметрических возмущениях и наличии запаздывания. Обсуждение и заключение. Предлагаемый алгоритм адаптации обеспечивает компенсацию неопределенности модели и возмущений, при этом достигается требуемая точность поддержания температуры в теплице. Результаты исследования послужат материалом для разработки многоконтурной САУ микроклимата теплицы с исследованием влияния и компенсации параметрической и структурной неопределенности, инерционностей и нелинейностей реальных элементов. Результаты работы могут быть использованы во многих отраслях народного хозяйства для исследования общих и прикладных проблем цифрового адаптивного управления процессами.
Ключевые слова
Введение. Существующие методы оценки технического состояния силовых гидроцилиндров не позволяют делать заключение о необходимости восстановления изношенных поверхностей деталей. При этом данные о предельных значениях износов деталей (значений износов, при достижении которых принимается решение о ремонте) в технических требованиях на капитальный ремонт и другой технической документации гидроцилиндров в настоящее время отсутствуют. Целью работы является определение предельных значений износов рабочих поверхностей деталей гидроцилиндров серии С. Материалы и методы. Для оценки технического состояния гидроцилиндров применяется разработанное устройство на базе стенда КИ-28097М-ГОСНИТИ, состоящее из нагрузочного гидроцилиндра и независимой гидростанции, при помощи которых проводились стендовые испытания бывших в эксплуатации гидроцилиндров серии С с определением значений общего коэффициента полезного действия. Результаты исследования. Представлены результаты стендовых и микрометражных исследований бывших в эксплуатации гидроцилиндров серии С (С75/30, С90/30, С 100/40). Получена регрессионная модель связи общего коэффициента полезного действия гидроцилиндров серии C (С75/30, С90/30, С100/40) с износами рабочих поверхностей деталей. По полученной регрессионной модели методом крутого восхождения определены предельные значения износов рабочих поверхностей деталей гидроцилиндров серии С (С75/30, С90/30, С100/40). Обсуждение и заключение. Установлено, что 19,5 % гидроцилиндров серии С (С 75/30, С 90/30, С 100/40) эксплуатировались в запредельном состоянии. Предельные значения износов рабочих поверхностей деталей гидроцилиндров серии С, которые определены методом крутого восхождения, в условиях предприятий технического сервиса при проведении входного контроля поступивших в ремонт гидроцилиндров позволят принимать решение о необходимости их восстановления.
Ключевые слова
Введение. Вспашка почвы является одной из главных операций при возделывании сельскохозяйственных культур. Она представляет собой одну из самых трудоемких операцией в растениеводстве, на которую расходуется около 40 % всех энергетических затрат. Основная часть этих издержек приходится на обеспечение мощности, необходимой для эффективного функционирования мотоблока с лемешно-отваль-ным плугом. Поэтому определение затрачиваемой мощности мотоблока является актуальной задачей. Материалы и методы. Для решения проблемы определения энергетических характеристик мотоблока при проведении вспашки почвы был проведен теоретический анализ, включающий в себя значение крутящего момента, силу тяги на ходовых колесах, силу сопротивления при их перекатывании, а также силу сопротивления на лемешно-отвальном корпусе плуга с учетом геометрических параметров пахотного агрегата на базе мотоблока. В результате чего были получены искомые зависимости затрачиваемой мощности и удельной энергоемкости, методика нахождения которых изложена в материалах статьи. Результаты исследования. В результате проведенного анализа баланса были получены зависимости для нахождения потребляемой мощности, а также для удельной энергоемкости вспашки почвы мотоблоком с лемешно-отвальным плугом, позволяющие дать энергетическую оценку функционированию пахотного агрегата. Обсуждение и заключение. На основании установленных расчетных зависимостей требуемой мощности и удельной энергоемкости с учетом экспериментальных данных взаимодействия плуга с почвой, конструктивных параметров и технологических режимов работы пахотного агрегата, состоящего из мотоблока «Нева» МБ-2С-7,5 Pro и лемешно-отвального плуга П1-20/3, были получены их частные решения, способствующие выбору оптимальных режимов его функционирования.
Ключевые слова
Введение. В статье обоснована необходимость высокотемпературной обработки ингредиентов комбикормов. Рассмотрены принципы работы и конструктивные особенности применяемых способов и оборудования для кормопроизводства. Проанализированы фазовые переходы, достоинства и выделены ключевые энергетические, технологические и технические недостатки. Целью исследования является обоснование возможности создания поточной линии тепловой обработки комбикормов путем применения тепловых затворов, обеспечивающих непрерывную загрузку сырья в реактор и выгрузку обработанных кормов при высоком давлении и температуре. Материалы и методы. Предложено перевести процесс баротермической обработки в более высокую зону фазовой диаграммы системы р, t (давление и температура). Это участок зоны перегретого пара с параметрами температуры 300-374 °С, давления 12-21 МПа и экспозицией обработки 30-60 секунд, что заменяет высокозатратные процессы нормализации, экспандирования, экструдирования и гранулирования. Показано изменение энтальпии Н в диапазоне Р от 0 до 21 МПа и t от 0 до 600 °С. Тепловые режимы представлены в аналитических зависимостях (формулах), которые являются базовыми условиями применения цифровых технологий. Результаты исследования. Предложено конструктивное исполнение реактора с тепловым затвором на загрузке и выгрузке, который является базовым агрегатом поточной линии тепловой обработки комбикормов. Результаты исследования являются основополагающими для разработки проекта и образца поточной малоемкостной линии. Обсуждение и заключение. Переход процесса баротермической обработки комбикормов в зону перегретого пара позволяет осуществить перевод плохо усвояемых элементов зерновых и бобовых в легкоусвояемые, очистить корма от патогенных бактерий. К преимуществам реактора и линии относятся простота конструкции, экономия энергии и возможность реализации перспективных цифровых технологий.
Ключевые слова
Введение. Всхожесть семян пшеницы является важным показателем их качества, используется для расчета и корректировки нормы высева. При определении всхожести необходимо учитывать ее изменения на этапе хранения. Решением данной проблемы станет разработка метода, который позволит определять всхожесть на любой технологической стадии (на этапах уборки, хранения, высева). Целью статьи является исследование зависимости мембранного потенциала от качества семян, разработка метода определения всхожести семян пшеницы на основе мембранных потенциалов. Материалы и методы. Проведенный авторами обзор научных работ, посвященных методам оценки качества семян пшеницы, свидетельствует о необходимости разработки высокочувствительных методов определения количественной характеристики всхожести с целью обеспечения скорости измерения и получения более точных результатов для дальнейшего использования. В результате проведенного обзора был разработан подход, который позволяет решить поставленную задачу посредством использования метода, основанного на исследовании мембранного потенциала зерен пшеницы. Результаты исследования. В данной статье проведено исследование зависимости мембранного потенциала семян пшеницы от их всхожести. Полученные результаты экспериментальных исследований подтвердили, что значение потенциала может быть использовано для оценки качества семян. Определены требования и оптимальные условия проведения экспериментальных исследований. Обсуждение и заключение. В результате исследования была установлена зависимость мембранного потенциала семян пшеницы от их всхожести, разработан метод определения всхожести семян пшеницы. Реализация данного метода позволит сельскохозяйственным предприятиям и фермерским хозяйствам проводить экспресс-оценку всхожести семян пшеницы на любой технологической стадии (на этапах уборки, хранения, высева).
Ключевые слова
Введение. Одним из параметров, характеризующих процесс очеса, является усилие, необходимое для очеса колоса. Усилие варьируется в некоторых пределах в зависимости от сорта растений, влажности зерна и морфоструктурных параметров продуктивности колоса. Для определения усилий очеса озимой ггшеницы различных сортов проведена серия опытов. Материалы и методы. Экспериментальные исследования производились в Калужской области на полях Калужского НИИ Сельского Хозяйства. Объект исследования - пшеница сортов «Касар», «Московская 56», «Московская 40». В связи с тем, что морфоструктурные элементы продуктивности колоса могут существенно изменяться в зависимости от условий выращивания, непосредственно перед испытаниями была произведена оценка длины колоса и плотности колосьев. Также было выдвинуто предположение, что на процесс взаимодействия гребенки с колосом влияют такие параметры, как ширина и толщина колоса. Результаты исследования. Получены усилия очеса указанных сортов ггшеницы при использовании гребенок со щелью 5-7 мм. Усилия очеса тненицы сорта «Касар» при использовании гребенки со щелью 6 мм изменялись в пределах 17,4...24,2 Н; при использовании гребенки со щелью 7 мм усилия составили 13,4...16,8 Н. Обсуждение и заключение. Подтверждено предположение о зависимости усилия очеса от ширины щели очесывающей гребенки. При использовании гребенок с шириной щели 5 и 6 мм в процессе очеса пшеницы сорта «Московская 40» диапазоны усилий составили 16,5...20,6 Н и 8,1...14 Н соответственно. Установлено влияние на величину усилия очеса таких параметров колоса, как ширина, толщина и плотность.