Статья посвящена исследованию системы большого числа однотипных игроков, взаимодействующих с внешним окружением. Мы моделируем это окружение как ведущего (внешнего) игрока. Основное предположение нашей модели состоит в том, что малые игроки могут влиять друг на друга и на ведущего игрока лишь через те или иные усредненные характеристики. Подобные модели носят название игр среднего поля с ведущим игроком. Мы предполагаем, что время непрерывно и динамика ведущего и малых игроков описывается обыкновенными дифференциальными уравнениями. Мы рассматриваем решение по Штакельбергу с ведущим игроком-лидером, то есть предполагается, что ведущий игрок объявляет заранее свое управление малым игрокам. Основной результат статьи состоит в доказательстве существования решения по Штакельбергу игры среднего поля с ведущим игроком в классе обобщенных программных управлений.

Известия Института математики и информатики Удмуртского государственного университета
2018. — Выпуск 2(52)
Содержание:
Наличие неопределенностей в математической модели позволяет говорить о риске, сопровождающем любое действие (стратегию) лица, принимающего решение. В экономической литературе имеются многочисленные различные понятия риска. Мы будем придерживаться следующего: риск - это возможность отклонения каких-либо величин от их желаемого значения. Отметим, что именно такому понятию риска отвечают многие реально работающие микроэкономические риски. Каким бывает отношение людей к риску? В ряде публикаций по финансовой экономике выделено три группы субъектов в зависимости от их отношения к риску: 1) противники риска - рискофобы (люди, боящиеся риска и отвергающие его); 2) рисконейтралы (люди, нейтрально относящиеся к риску); 3) любители риска - рискофилы. В экономике считается, что значительное большинство людей относится к противникам риска. На вопрос о том, как фактор неопределенности влияет на поведение людей, экономист обычно отвечает: «Люди не любят рисковать и готовы заплатить деньги за то, чтобы избежать бремя риска». Однако возникают ситуации, когда риск просто необходим. Люди прошлого выходили в море, что часто было связано с риском для жизни. Существовала даже латинская пословица: «Плавать по морю необходимо, жить - не очень». Так любители риска относятся и к альпинизму, авиации, экстремальным ситуациям. Более того, предпринимательство и риск - понятия неразделимые. В экономической практике принято, что доля риска является необходимым условием увеличения дохода. Зачастую возникают ситуации, когда без риска вообще обойтись невозможно (например, в чрезвычайных ситуациях). Наконец, значительное большинство людей относятся к рисконейтралам. Они будут пускаться пусть даже и в рискованные предприятия в том случае, если доход будет выглядеть достаточно привлекательным и одновременно, чтобы возможно меньше нужно было бы рисковать. Естественно, что при принятии решений рискофобы основываются на идеях вальдовского принципа гарантированного результата (максимина). Рискофилы - на концепции минимаксного сожаления (по Нихансу-Сэвиджу). Для рисконейтралов вопрос оставался неисследованным. В настоящей статье предлагается приоткрыть эту завесу, а именно, определяется понятие слабо гарантированного одновременно по исходам и рискам решения однокритериальной задачи при неопределенности (ОЗН) (формализация основана на понятии векторной седловой точки из теории многокритериальных задач при неопределенности). Устанавливаются достаточные условия, с помощью которых найден явный вид введенного решения для общего вида ОЗН с ограниченной неопределенностью.
Ключевые слова
В работе исследуются эффекты, возникающие в замкнутой сети обобщенных ключевых производителей, связанных отношениями «поставщик-клиент» при неизменных объемах товарообмена. Основными задачами данного исследования являются выявление выраженных негативных социально-экономических свойств системы и поиск инструментов компенсации этих свойств как за счет изменения внутренних законов товарно-денежного обмена, так и с помощью внешнего регулятора. Последовательно рассматриваются модели, связанные с повышением наценок убыточными предприятиями, государственной поддержкой убыточных предприятий и государственным влиянием на рассматриваемую систему через эмуляцию участника сети. В ходе масштабных вычислительных экспериментов показывается, что при реализации государственной поддержки по определенным алгоритмам через единственную искусственную убыточную вершину-потребитель удается не только избежать появления иных убыточных производителей, но и существенно сбалансировать доходы прибыльных.
Ключевые слова
В статье рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad(1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t)$, $t\geqslant 0$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad(2)$$ устанавливается критерий ее равномерной глобальной достижимости. Это свойство означает существование такого $T>0$, что для всяких положительных чисел $\alpha$ и $\beta$ найдется $d=d(\alpha,\beta)>0$, обеспечивающее при всяком $t_0\geqslant 0$ и произвольной $(n\times n)$-матрице $H$, $\|H\|\leqslant\alpha$, $\det H\geqslant\beta$, возможность построения измеримого на $[t_0,t_0+T]$ матричного управления $U(\cdot)$, для которого справедлива оценка $\sup\limits_{t\in [t_0,t_0+T]}\|U(t)\|\leqslant d$ и равенство $X_U(t_0+T,t_0)=H$, где $X_U$ - матрица Коши системы $(2)$. Доказательство критерия основано на полученной в работе теореме о представлении всякой $(n\times n)$-матрицы с положительным определителем в виде произведения девяти верхне- и нижнетреугольных матриц с положительными диагональными элементами и дополнительными условиями на норму и определитель этих матриц.
Ключевые слова
В статье рассматривается задача о построении упаковки из набора конгруэнтных шаров в замкнутые выпуклые множества. В качестве формы контейнеров для упаковки выбраны эллипсоиды. В одном случае считается фиксированным число элементов упаковки, а критерием оптимизации выбрана максимизация радиусов элементов упаковки. В другом случае фиксирован радиус шаров и ставится задача об отыскании упаковки с наибольшим числом элементов. Предложены итерационные алгоритмы построения оптимальных упаковок, основанные на имитации отталкивания их центров друг от друга и от границы контейнера. Развиты алгоритмы построения упаковок на базе наиболее плотной упаковки трехмерного пространства, представляющей собой решетки различного типа и их комбинации. Выполнено моделирование решения ряда задач и визуализация результатов.
Ключевые слова
Рассматривается дифференциальная игра двух лиц, описываемая системой вида $$\dot x = f(x, v) + g(x, u), \quad x \in \mathbb{R}^k, \quad u \in U, \quad v \in V.$$ Множеством значений управлений убегающего является конечное подмножество фазового пространства. Множеством значений управлений преследователя является компактное подмножество фазового пространства. Целью убегающего является уклонение от встречи, то есть обеспечить состояние системы не ближе некоторой окрестности нуля. Получены достаточные условия разрешимости задачи уклонения в классе кусочно-программных стратегий убегающего на бесконечном и любом конечном интервалах времени. Условия накладываются на вектограмму скоростей в нулевой точке фазового пространства. В случае уклонения от встречи на бесконечном интервале времени эти условия обеспечивают некоторое преимущество на убегающего. Для доказательства полученных результатов существенную роль играют свойства положительного базиса.
Ключевые слова
Рассматриваются ультрафильтры (максимальные фильтры) и максимальные сцепленные системы на $\pi$-системах с «нулем» и «единицей». Обсуждаются различные варианты топологического оснащения и получающиеся на их основе битопологические пространства. Отмечается, что битопологическоепространство ультрафильтров может рассматриваться как подпространство битопологического пространства максимальных сцепленных систем. Устанавливаются необходимые и достаточные условия максимальности фильтров, а также свойства, характеризующие максимальные сцепленные системы, не являющиеся ультрафильтрами, и выясняются некоторые условия, достаточные для существования таких систем. Указаны условия, при которых битопологические пространства ультрафильтров и максимальных сцепленных систем являются вырожденными (топологии, определяющие соответствующее битопологическое пространство, совпадают), а также условия, гарантирующие невырожденность. Приведен новый вариант свойства плотности исходного множества в пространстве ультрафильтров с топологией волмэновского типа. Данный вариант может использоваться при построении расширений абстрактных задач о достижимости с ограничениями асимптотического характера.
Ключевые слова
Рассматривается одна оптимизирующая процедура для решения задачи последовательного обхода мегаполисов при наличии условий предшествования и функций стоимости, зависящих от списка заданий. Исследуется постановка замкнутой в следующем смысле задачи: стартовая точка (база процесса) и терминальное состояние должны совпадать (аналог замкнутой задачи коммивояжера). Данное условие естественно для целого ряда прикладных задач, связанных с проведением серий однородных процедур с элементами маршрутизации. Так, в частности, в задачах, связанных с листовой резкой деталей на машинах с ЧПУ, при работе с сериями деталей, отвечающих одному и тому же раскройному плану, режущий инструмент следует возвращать в точку старта для проведения повторных операций. В такой постановке задача оптимизации точки старта представляет не только теоретический, но и определенный практический интерес. На уровне математической постановки необязательно требовать упомянутого возврата в точку старта: данное условие может быть отражено посредством введения соответствующей терминальной функции, аргументом которой является последняя из точек посещения контуров детали. Такой подход позволяет охватить и некоторые более общие случаи, когда задается стоимость терминального состояния, включающая в виде параметра точку старта. В результате точки старта и финиша связываются функциональной зависимостью в виде цены, определяющей качество финального состояния процесса. Данное представление используется в статье.
Ключевые слова
Изучена однозначная разрешимость начальной задачи для одного квазилинейного интегро-дифференциального уравнения в частных производных высшего порядка с вырожденным ядром. Выражение дифференциальных уравнений в частных производных высокого порядка через суперпозицию дифференциальных операторов в частных производных первого порядка позволило применять методов решения дифференциальных уравнений в частных производных первого порядка. Доказана теорема об однозначной разрешимости поставленной начальной задачи методом последовательных приближений. Получена оценка сходимости итерационного процесса Пикара. Показана устойчивость решения начальной задачи по второму аргументу.