В работе представлен анализ установившегося теплового состояния композитных спиц безвоздушного колеса (шины) при движении. Нагрев спиц на высоких скоростях движения – один из основных недостатков безвоздушных колес, проявляемый вследствие наличия внутреннего трения в материалах, поглощающего часть энергии деформации. Повышенная температура материалов колеса оказывает существенное влияние на его работоспособность, так как снижает механические свойства материалов, создает дополнительное термонапряженное состояние и ведет к деградации материала. Рациональным решением данного вопроса является использование современных расчетных методов вместе с применением композитных материалов, обладающих малым внутренним гистерезисным демпфированием. Рассеянная энергия деформирования, представляющая собой площадь петли гистерезиса, определяется вязкоупругими свойствами материала и деформациями при нагружении. Необходимые для расчета теплового состояния вязкоупругие свойства стеклопластика были определены экспериментальным путем на динамическом механическом анализаторе DMA 242 C (NETZSCH). Деформации спиц колеса определены из расчета на статическую прочность, с учетом нюансов предложенной конструкции. Полученные данные были использованы для расчета внутреннего нагрева спиц колеса при движении на двух скоростях: 5 и 90 км/ч. Результаты проведенной работы позволяют считать предложенную многоспицевую конструкцию безвоздушной шины вполне работоспособной, обладающей низким тепло- выделением и возможностью применения в гражданских и военных транспортных средствах, в целях повышения надежности и снижения инфракрасной заметности.
Вестник Южно-Уральского государственного университета. Серия: Машиностроение
2017. — Выпуск 1
Содержание:
Работа посвящена методике моделирования разрушения магистральных трубопроводов. Применение современных вязких трубных сталей не решает полностью проблему хрупкого разрушения этих конструкций, поскольку стремление увеличить толщину стенки и рабочее давление, а также необходимость использовать трубы в холодном климате сдвигают разрушение в сторону хрупкого – но, естественно, не делают его полностью хрупким и требуют применения подходов нелинейной механики разрушения. Моделирование разрушения – при образовании длинных магистральных трещин – должно учитывать силы инерции частей трубы, приходящих в движение при раскрытии трещины, а также возможность падения давления в трубе при потере ею герметичности. Эти особенности задачи могут быть смоделированы в конечно-элементном пакете LS-DYNA. Однако LS-DYNA предлагает ограниченный набор критериев разрушения, в который не входят классические критерии нелинейной механики разрушения. Задачей работы является подбор критерия, реализованного в программе LS-DYNA и в то же время достаточно хорошо согласующегося с экспериментальными данными. В качестве такого критерия рассмотрен ресурс пластичности при условии, что пластическая деформация перед вершиной трещины вычисляется с помощью процедуры взвешенного усреднения по некоторому представительному объему, исключающей влияние размеров конечных элементов на результат. Подобраны параметры весовой функции, при которых нагрузка начала движения трещины, определяемая с помощью модели вязкого материала, совпадает с нагрузкой, определяемой через параметры нелинейной механики разрушения. Показано, что задача подбора параметров является плохоопределенной. Тем не менее найденные значения параметров в дальнейшем позволят выполнить расчет динамического распространения длинных продольных трещин в трубах с учетом эффектов, рассматриваемых программой LS-DYNA – сил инерции материала стенок трубы, скорости распространения волны возмущения в газе или жидкости, заполняющих трубу, декомпрессии.
Ключевые слова
В статье предлагается метод количественного описания адсорбционного процесса на поверхностях малых зазоров проточной части гидравлических аппаратов. Анализируется вклад адсорбции в трибологические характеристики пар трения и зависимость процесса от высоких давлений. Авторами рассматриваются механизмы образования адсорбционных пленок. Приводятся способы проведения при помощи ротационного вискозиметра высокого давления замеров параметров рабочей среды, необходимых для расчета по ним требуемых входных величин. Указываются преимущества использования в расчетах линейных величин молекулярной цепи, рассчитанных из соотношений Ван-дер-Вальсовых объемов и площадей Ван-дер-Вальсовых поверхностей. Описаны алгоритмы расчета влияния высоких давлений на значения Ван-дер-Вальсовых объемов, площадей Ван-дер-Вальсовых поверхностей и связанных с ними параметров. Приведены примеры расчета зависимости адсорбции поверхностно-активного вещества от рабочего давления. Показана численная зависимость толщены адсорбционного слоя от изменения давления для ряда значений давления. Описан метод определения течения физико-химических превращений по значениям времени диэлектрической релаксации. Данный метод позволяет определять значения давлений соответствующих появлению реологических эффектов в рабочей среде. Приведен пример реологического эффекта, возникающего в малых зазорах под действием образующихся адсорбционных слоев. Экспериментально подтверждено наличие фазовых и структурных превращений в малых зазорах гидравлических приводов высокого давления. Также экспериментально доказано наличие описываемых реологических эффектов в зазорах меньше 10 мк для жидкостей углеводородного состава и их отсутствие подобных эффектов в объеме идентичной углеводородной среды при таких же давлениях. Произведен анализ полученных результатов.
Ключевые слова
Основной задачей производства машин является обеспечение их эксплуатационного качества, прямо зависящего от эксплуатационных свойств деталей. Эксплуатационные свойства, как отдельных поверхностей, так и деталей в целом – свойства, способствующие выполнению деталью заданных функций при заданном ресурсе и условиях эксплуатации. Традиционная методология технологического обеспечения эксплуатационных свойств исходит из необходимости обеспечения при изготовлении детали заданных производственно-технологических показателей качества в предположении, что они гарантируют достижение заданных эксплуатационных свойств. Между тем доказано, что разные множества и последовательности технологических методов могут приводить к близким значениям производственно-технологических показателей качества деталей, но существенно разным их эксплуатационным свойствам. Методология технологического проектирования, базирующаяся на суперпозиции результатов технологических воздействий на предмет производства себя исчерпала. Предложенная концепция направленного формирования свойств изделий (в частности, деталей) рассматривает их достигнутое качество как результат трансформации его отдельных показателей, учитывающий как оперативное воздействие на предмет производства, так и наследование, и взаимное влияние формирующихся свойств. Для описания трансформации разработан математический аппарат, позволяющий ее детерминированное и стохастическое моделирование. В представленной работе изложено приложение рассматриваемой концепции к направленному формированию заданных эксплуатационных свойств изделий на примере деталей. Перспективно формирование технологических решений, гарантированно обеспечивающих явно заданные эксплуатационные свойства исполнительных поверхностей или детали в целом. Показано, что необходимый и достаточный уровень гарантированного обеспечения заданных эксплуатационных свойств должен быть ограничен и учитывать влияние эмерджентности технологического процесса как системы на результаты реализующихся в ней элементарных решений.
Ключевые слова
Почти все технологические процессы в практике производства предусматривают обработку поверхностей или за несколько проходов, выполняемых на отдельных операциях, или в виде переходов одной операции. Для объективности получения результата важно учитывать максимальное количество факторов и характер их влияния при назначении потребной величины припуска, так как это позволит назначать величину припуска более обоснованно, а это означает снижение затрат на изготовление деталей при сохранении заданного качества. Для экономичной и производительной работы в условиях массового и крупносерийного производства имеет особое значение решение следующей задачи: разделить общий припуск на слои в такой пропорции, чтобы получить величины стойкости резцов, связанные между собой определенным отношением. Представлено аналитическое решение задачи определения припусков при последовательной обработке детали на нескольких токарных операциях. Методика расчета предполагает получение величин стойкости инструментов на последовательных операциях, связанных между собой заранее определенным соотношением стойкости режущего инструмента с учетом ограничивающих параметров по максимальному крутящему моменту на шпинделе станка, по надежности работы зажимного устройства. Решение проводится методом итераций. Показано, что если обработка производится на автоматической линии или на многорезцовом оборудовании, выгодно выполнять переналадку обоих резцов одновременно при одной остановке работы. В этом случае отношение стойкостей должно быть целым числом или дробью, обратной целому числу.
Ключевые слова
Рассмотрена практическая проблема выбора абразивного инструмента на операции шлифования, заключающаяся в сложности назначения многочисленных характеристик инструмента и высоком влиянии квалификации инженера-технолога. Предлагается решение этой проблемы путем разработки программного обеспечения для автоматизированного выбора абразивного инструмента. Для разработки программного обеспечения необходим алгоритм, базирующийся на некоторой существующей методике выбора инструмента. В качестве базы выбрана методика из справочника Уральского НИИ абразивов и шлифования, учитывающая основные физические взаимосвязи и закономерности процессов высокоскоростной обработки. По методике построен укрупненный алгоритм, состоящий из девяти блоков и включающий выбор всех основных параметров абразивного инструмента. Алгоритм реализован в инструментальной среде Microsoft Visual на объектно-ориентированном языке программирования C#, в результате чего получено программное обеспечение, включающее в себя набор справочных таблиц и аппарат выбора необходимых значений из этих таблиц. Показан пример функционирования приложения: на основе введенных исходных данных, демонстрирующих некую производственную ситуацию, программное обеспечение выбирает три подходящих маркировки шлифовальных кругов по мере их предпочтительности. Использование разработанного программного обеспечения показало, что время, затрачиваемое на выбор шлифовального круга, составляет 10–30 с, на качество выбора квалификация инженера-технолога не влияет. В связи с этим разработанный программный модуль позволяет решить поставленную задачу, повысить эффективность обработки шлифованием и сократить время технологической подготовки производства.
Ключевые слова
Скорость и стоимость внедрения в производство новой техники напрямую зависят от эффективности работы каждой технологической цепочки на всех этапах от конструирования и проектирования изделия до создания его первоначального макета в натуральную величину. Резко ускорить прохождение этих этапов помогают высокотехнологичные методы 3-мерного компьютерного моделирования и создания твердых копий деталей машин. В настоящее время во всем мире проводятся интенсивные научно-исследовательские и опытно-конструкторские работы не только по созданию новых, но и по совершенствованию развитых ранее технологических методик и систем послойного лазерного синтеза объемных изделий (ЛСОИ) деталей машин. Методы селективного лазерного спекания (СЛС), плавления (СЛП) и трехмерной лазерной наплавки (DMD) являются одним из наиболее перспективных способов реализации технологии быстрого прототипирования. Поэтому изучение данной темы на данный момент является актуальным. В настоящее время в ряде отраслей промышленности имеются большие тепловые потоки от одной поверхности к другой, вследствие чего даже незначительные контактные сопротивления вызывают местные перегревы, что часто крайне нежелательно. В работе была изучена эффективная теплопроводность зернистых систем, которая рассматривалась как функция пористости, теплопроводности газа, заполняющего поры материала, теплопроводности газового микрозазора, теплопроводности самих частиц и контактной теплопроводности на стыке частиц. Для теоретических исследований процессов селективного лазерного спекания необходимым является разработка методов описания эффективных коэффициентов теплопроводности (ЭКТ) порошковой среды, которые учитывают, что при нагреве может происходить частичное или полное плавление материала сфер, приводящее к изменению структуры среды. Отсюда следует важное требование к моделям ЭКТ: структурная модель в пределе полного плавления материала твердых частиц должна давать значение эффективной теплопроводности, которое сшивается с эффективной теплопроводностью, даваемой бесструктурной моделью. Для случая полного плавления частиц предлагается метод расчета эффективной теплопроводности расплава с газовыми включениями, который описан в работе.