Вибрация конструкций под воздействием нестационарных гидродинамических сил, обусловленных обтеканием потоком поверхностей конструкций, может неблагоприятно сказываться на прочности и усталостной долговечности. Снижение неблагоприятного воздействия гидродинамических сил в настоящее время становится возможным по результатам связанных трехмерных расчетов гидродинамики (CFD) и вибрации. Однако для адекватного описания в связанной задаче определяющих физических процессов должны использоваться специфические именно для задачи гидроупругих колебаний расчетные модели и подходы. Для обоснования и валидации таких подходов разработана экспериментальная модель и выполнена серия исследований процесса возбуждения конструкции потоком воды.В качестве конструкции рассматривалась модель, состоящая из двух последовательно установленных цилиндров в поперечном потоке рабочей среды. В процессе испытаний, в зависимости от скорости потока, измерялись уровни вибраций и пульсаций давления в потоке и нестационарных полей скорости. Относительно простая конструкция рассматриваемой модели позволила применить различные бесконтактные системы измерений нестационарных процессов для кроссвалидации получаемых экспериментальных данных и для оценки неопределенностей в процессе испытаний.На основании полученных данных синхронных измерений анализировалось взаимное влияние потока и динамики конструкции, обусловленное эффектом синхронизации между частотой срыва (или ее гармониками) и собственной частотой цилиндров. Таким образом, выполненные исследования позволили получить информацию одновременно и о динамических характеристиках потока, и о параметрах, характеризующих вибрацию, для случая консольного закрепления стержней.Полученные экспериментальные данные используются для определения требований к точности проведения численных расчетов гидродинамических сил и для валидации однои двусторонне связанных методов численного расчета возбуждений конструкций потоком.
Приборы и методы измерений
2019. — Выпуск 3
Содержание:
В настоящее время в системах спутниковой и космической связи и радиоастрономии широко используются зеркальные антенные системы. Развитие данных отраслей требует разработки новых эффективных антенных систем. Возможным техническим решением для создания эффективной зеркальной антенны является «гибридная» схема, когда адаптивная фазированная антенная решетка используется в качестве облучателя. Данная работа посвящена разработке внефокусного облучателя на основе фазированной антенной решетки для параболической зеркальной антенны космической связи. Целью работы являлась разработка оптимальной конструкции облучателя с выбором элемента решетки и проведением экспериментальных исследований выбранного конструктивного элемента.В качестве инструмента выбора конфигурации облучателя использован метод восстановления волнового фронта. Идея его использования заключается в воспроизведении облучателем электромагнитного поля падающей плоской волны с целью равномерного засвета апертуры зеркала антенны.Для выбора конструктивного элемента облучателя рассмотрены несколько антенн: патч-антенна, плоская спиральная антенна, коническая спиральная антенна. Определены требования к элементу фазированной антенной решетки. Проведено моделирование облучателя на основе перечисленных конструктивных элементов и проведена оптимизация геометрии облучателя по критерию максимального усиления.Максимальное усиление достигнуто конструкцией облучателя на основе конических спиральных антенн и составило 30,8 дБ, что для рассматриваемого раскрыва зеркала 2,4 м близко к традиционным фокусным схемам. Полученные результаты позволяют создать адаптивную антенную систему с возможностью компенсировать отклонения формы зеркала от теоретического профиля, а также фазовые искажения в атмосфере изменением весовых коэффициентов решетки.
Ключевые слова
В связи с развитием систем автоматизации и контроля большой интерес вызывают методы и приборы для измерения больших значений силы тока. Целью работы являлась разработка принципиальной схемы распределенного сенсора силы тока на основе анализа частотных характеристик рассеяния Мандельштама–Бриллюэна; cоздание математической модели сенсора для демонстрации его работы и расчет его основных параметров.Для проведения измерений использовалось оптическое волокно с токопроводящим покрытием. Между токовой шиной, силу тока в которой необходимо измерить, и токопроводящим покрытием возникает сила Ампера, которая в свою очередь приводит к появлению деформации волокна. Вынужденное рассеяние Мандельштама–Бриллюэна имеет характеристическую частоту, значение которой зависит от величины деформации волокна. Изменение значения этой частоты позволяет измерить значение силы тока в токовой шине. Для регистрации изменения частоты и фиксации местоположения возмущения использовался метод анализа частотных характеристик рассеяния Мандельштама– Бриллюэна.Приведена математическая модель работы сенсора на основе трехволновой модели вынужденного рассеяния Мандельштама–Бриллюэна. Данная модель позволяет найти изменение интенсивности оптического сигнала, проходящего по оптическому волокну, в зависимости от изменения характеристической частоты рассеяния. Метод использует обратное Фурье-преобразование для построения функции импульсного отклика.Представлена принципиальная схема распределенного сенсора силы тока на основе метода анализа частотных характеристик рассеяния Мандельштама–Бриллюэна. Проведена априорная оценка параметров измерительной системы исходя из математической модели вынужденного рассеяния Мандельштама–Бриллюэна в оптическом волокне. Пространственное разрешение сенсора при определении длины и местоположения участков волокна составляет 0,06 м. Разрешающая способность сенсора составляет 0,22 кА, максимальное значение силы тока 25 кА. Исследована зависимость работы сенсора при различных мощностях излучения используемого лазера. Рассмотрено влияние изменения показателя преломления оптического волокна на результат измерения.
Ключевые слова
Контроль параметров готовых транзисторов и межоперационный контроль при их изготовлении являются необходимыми условия выпуска конкурентоспособных изделий электронной промышленности. Традиционно для контроля биполярных транзисторов используются измерения на постоянном токе и регистрация вольт-фарадных характеристик. Проведение измерений на переменном токе позволит получить дополнительную информацию о параметрах биполярных транзисторов.Цель работы – показать возможности метода импедансной спектроскопии для контроля дифференциального электрического сопротивления p–n-переходов биполярного p–n–p-транзистора в активном режиме.Методом импедансной спектроскопии исследован p–n–p-транзистор КТ814Г производства ОАО «ИНТЕГРАЛ». На переменном токе в интервале частот 20 Hz–30 MHz определены значения дифференциального электрического сопротивления и емкости p–n-переходов база–эмиттера и база–коллектора при постоянных токах базы от 0,8 до 46 µA.Результаты работы могут быть использованы при отработке методик выходного контроля дискретных биполярных полупроводниковых приборов.
Ключевые слова
Повышение износостойкости поверхности металлических деталей, используемых в различных отраслях промышленности, является одним из актуальных направлений материаловедения. Целью данной работы являлось сравнительное исследование износостойкости образца из алюминиевого сплава (EN AW-2024, алюминиевый сплав системы Al-Cu-Mg), модифицированного ультрадисперсными частицами минералов с использованием метода склерометрии, позволяющего измерить физикомеханические свойства материала в микромасштабе, а также определение некоторых трибологических параметров (твердости и модуля упругости) образца из дюралюминия с минеральным покрытием.Измерение износостойкости было выполнено с помощью сканирующего твердомера «НаноСкан4D» методом многоциклового трения сапфировой сферой с контролем силы прижима и углубления наконечника в образец. Использование такой системы измерения особенно важно при испытании тонких модифицированных слоев, когда толщина слоя сопоставима с параметрами шероховатости поверхности и исключено влияние подложки.Результаты измерений показали, что износостойкость поверхности образца из алюминиевого сплава, модифицированной ультрадисперсными частицами минералов, увеличилась более чем 12 раз по сравнению с износостойкостью поверхности из алюминиевого сплава без модификации. Также выполнены измерения твердости и модуля упругости поверхности модифицированного образца с учетом особенностей измерения механических параметров тонких слоев.Полученные параметры модифицированной поверхности алюминиевого сплава могут быть в дальнейшем использованы для построения моделей процессов трения и износа поверхности, модифицированной ультрадисперсными частицами минералов. Отсутствие в настоящее время приемлемого объяснения природы особых свойств поверхности, модифицированной частицами минералов природного происхождения, не исключает использования наблюдаемых эффектов для значительного повышения ресурса различных деталей и механизмов.
Ключевые слова
На современном этапе развития цифровых информационных технологий происходит интенсивная цифровизация (компьютеризация) как прямых, так и косвенных методов измерения. Прямым следствием компьютеризации измерений стало, во-первых, появление нового класса средств измерения – процессорных измерительных средств (ПрИС); во-вторых, повышение уровня формализации измерительных процедур; в-третьих, создание новой, революционной технологии – технологии виртуальных приборов (ВП). Цель статьи – анализ развития цифровых технологий измерений спектров, выявление возникающих при этом проблем и формулирование первоочередных научных и прикладных задач по их разрешению.Теоретическими и прикладными исследованиями установлено, что цифровые технологии измерений спектра, кроме существенных преимуществ, обладают и определенными недостатками. Показано, что недостатки цифровых технологий измерений спектров вытекают как из природы цифровых методов, так и из аналитических и стохастических свойств базисов применяемых преобразований при измерениях спектров. Анализ цифровых методов измерений спектров показал, что методы, основанные на дискретном преобразовании Фурье (ДПФ), сохраняют свою ведущую роль и эффективны практически во всех предметных областях. Однако есть и проблемы цифровизации измерений спектров сигналов на основе ДПФ, которые связаны, прежде всего, с проявлением ряда негативных эффектов, которые отсутствуют при аналоговых методах измерения спектров на основе преобразования Фурье. Это эффект периодизации измерительного сигнала и его спектра, эффект частокола, а также эффект наложения. Как показал анализ, существующие методы борьбы с негативными эффектами цифровизации измерений спектров разрешают проблемы внедрения цифровых технологий лишь отчасти. Для борьбы с негативными эффектами цифровизации измерений спектров в работе предложено обобщение ДПФ в виде параметрического ДПФ (ДПФ-П).Сформулированы основные научные и прикладные задачи компьютеризации измерений спектров сигналов: развитие теории цифровых методов измерения спектров сигналов, создание новых и усовершенствование существующих цифровых методов измерений спектров сигналов, разработка алгоритмического, программного и метрологического обеспечений ПрИС и ВП для реализации ДПФ-П.
Ключевые слова
Наличие анизотропии свойств ферромагнитных материалов предопределяет необходимость ее исследования и контроля, поскольку она оказывает существенное влияние на основные физико-механические характеристики деталей, изделий и конструкций. Цель работы заключалась в экспериментальном исследовании возможности применения магнитошумового метода для неразрушающего контроля механических свойств ферромагнитных материалов на примере коэффициента нормальной анизотропии Rn листового проката, механических напряжений при упругой деформации электротехнической стали и анизотропии физико-механических свойств ферромагнитных материалов.Так как механическая анизотропия связана с магнитной анизотропией, при ее исследовании использовался магнитный метод на основе эффекта Баркгаузена (МЭБ), информативные параметры которого относятся к магнитоанизотропным. Сравнение результатов оценки анизотропии с помощью МЭБ на партии образцов штампуемой тонколистовой стали с измеренными производителем значениями Rn показало их близкое совпадение. Результаты исследований показали возможность оценки степени Rn с помощью МЭБ при применении его на производстве. Для изучения магнитной анизотропии в различных материалах и влияния на нее упругих напряжений растяжения и сжатия при изгибе с помощью МЭБ были изготовлены устройство для кругового вращения преобразователя Баркгаузена на поверхности исследуемого образца и устройство для формирования в образце упругих напряжений при изгибе.Установлено, что упругая деформация в образцах электротехнической стали приводит к резкому изменению уровня магнитного шума и формы круговых диаграмм с учетом знака формируемых в образце напряжений. Установлено, что в результате холодной прокатки в процессе производства образцы электротехнической стали имеют ярко выраженную текстуру, обусловленную направлением проката листа. Создаваемые упругие напряжения в рассматриваемом диапазоне практически не меняют текстурированность – наведенную кристаллографическую анизотропию после прокатки материала.Полученные с помощью магнитошумового метода результаты могут быть полезны при изучении, мониторинге и контроле анизотропии, кристаллографической текстуры, структурной неоднородности ферромагнитных материалов в виде листового проката, тонколистовой и рулонной стали, листовой штамповки и решении других задач с использованием магнитошумового метода в лабораторных и цеховых условиях.