Решается задача аналитического синтеза управляющего ускорения беспилотного летательного аппарата (БЛА) мультироторного типа применительно к легкому квадрокоптеру с высокой продолжительностью полета. Аналитически определяется оптимальное управление при заданном минимизируемом функционале качества в виде минимального времени, необходимого для перевода БЛА из заданного начального в заданное конечное положение в пространстве. Рассматривается математическая модель движения центра масс БЛА в заданной плоскости относительно земной поверхности. Особенностью предлагаемой методики является решение задачи максимального быстродействия (форсированного управления) на основе рассмотрения законов кинематики равноускоренного движения твердого тела. При заданных характеристиках максимально допустимых значений скорости и управляющего ускорения БЛА аналитически вычисляются моменты переключения управляющего сигнала, которые могут быть реализованы в автопилоте БЛА. Это позволяет в отличие от классических методов решения задачи форсированного управления избавиться от необходимости решения двухточечной краевой задачи и рассмотрения дополнительных условий трансверсальности. Проведенное компьютерное моделирование полученных аналитически результатов в виде процессов изменения управляющего ускорения, а также параметров движения БЛА показало работоспособность предлагаемой методики и перспективность ее использования на первоначальном этапе синтеза системы управления БЛА.
Наука и техника
2023. — Выпуск 2
Содержание:
В статье приведен теоретический анализ колебаний криволинейного стержня в виде петли малой жесткости, образованного из четверти окружности с постоянным радиусом, ограниченного углом π/2 < γ < π, и двух прямолинейных стержней. Указывается, что в практике ультразвуковой технологии известны некоторые разновидности конструкций, в которых использованы упругие элементы в качестве резонаторов, волноводов, трансформаторов колебаний и инструментов для воздействия на обрабатываемые материалы. Их применение позволяет получить дополнительный импульс силы в рабочей зоне за счет использования потенциальной энергии, вызванной действием упругих свойств таких элементов. Однако теоретическому обоснованию использования упругих элементов в ультразвуковых системах уделено недостаточное внимание. В связи с этим настоящая работа посвящена теоретическому обоснованию применения упругого инструмента из тонкого стержня, имеющего форму петли. Представлены схема и расчет перемещений свободного конца криволинейного стержня под действием сил, направленных вдоль продольной оси. Показано, что упругие перемещения обусловлены криволинейной формой в виде дуги окружности изогнутого стержня. Для сравнения приведены расчетные схемы двух типов криволинейного стержня с присоединенным стержнем. В первом случае свободные концы прямолинейных стержней, направленные вертикально вниз, совершают упругие перемещения по двум координатам. Во втором – концы прямолинейных стержней, направленные под некоторым углом к вертикальной оси и сходящиеся в нижней точке в силу симметричности их расположения, совершают вертикальные перемещения лишь по одной координате. Рассмотренная форма изогнутого стержня может быть успешно применена в качестве инструмента для выполнения технологических задач при ультразвуковом способе обработки отверстий в хрупких материалах, точечной сварки и пр. Такая схема в отличие от традиционной схемы ультразвуковой обработки, основанной на использовании прямолинейных стержней, позволяет усилить величину амплитуды колебаний инструмента за счет упругих перемещений криволинейного участка стержня малой жесткости. Предложенная форма позволит увеличить интенсивность колебаний инструмента и повысить производительность процесса и точность обработки. Полученная расчетная формула показывает, что на величину упругих перемещений криволинейного стержней влияют жесткость поперечного сечения и радиус кривизны изогнутой части, а также угол наклона прямолинейного стержня. Теоретический расчет дополнен сравнительным экспериментальным изучением форм Хладни для обеих схем, полученных на поверхности листа с помощью абразивных частиц.
Ключевые слова
Исследование посвящено процессу газотермического формирования покрытия из бронзового порошка в плазменно-топливном варианте с использованием электродугового плазмотрона на стальных образцах. Цель работы – изучение технологии для плазменно-топливного напыления функциональных покрытий (износостойкого и антимикробного применения) на изделия машиностроительного и медицинского назначения с повышенной производительностью процесса и умеренными энергозатратами по сравнению с традиционными методами термического напыления в инертных и бескислородных газовых средах. С помощью экспериментального и термодинамического расчетного методов оценивались тепловые и химические параметры процесса в условиях напыления при атмосферном давлении, что позволило определить область предпочтительных режимов данной технологии. На модернизированной авторами установке плазменного напыления порошков электрической мощностью до 40 кВт, работающей с регулируемым сочетанием технических азота и пропан-бутана, а также воздуха, проведены измерение и оптимизация режимных и конструктивных параметров системы нанесения покрытия из алюминиевой бронзы. Эксперимент осуществлен с использованием разработанного топливного интенсификатора, стыкуемого с дуговым плазмотроном ПП-25, и дополнительной технологической оснастки (защитного кожуха). Для полученных покрытий толщиной от 100 до 450 мкм из промышленного порошка алюминиевой бронзы проведено тестирование фазового состава и некоторых параметров получаемых покрытий на стальных изделиях. Производительность предложенного процесса достигает 7–15 кг/ч по порошку при умеренной мощности плазмотрона до 35–40 кВт и умеренном расходе углеводородного газа (предпочтительно технического пропан-бутана марки СПБТ) 0,1–0,35 кг/ч. Оценка параметров энергоэффективности разработанной технологии и ее расчетных технико-экономических характеристик в сравнении с плазменным и комбинированным оборудованием аналогичного назначения показала, что она имеет преимущество, в частности, по удельным энергозатратам и общему энергетическому КПД аппарата не менее чем на 20–30 %. Это позволяет перейти к стадии последующего внедрения данной технологии в производство на основе нового процесса получения металлопокрытий различного назначения, в том числе с антимикробными свойствами.
Ключевые слова
Для проведения силового расчета противоугонного устройства (ПУ) грузоподъемных кранов, работающих на открытом воздухе, необходимо знать условия, обеспечивающие их надежный останов и фиксацию на рельсах, а также кинематические параметры, а именно скорость и ускорение грузоподъемных кранов при их движении по рельсам под действием угонной силы ветра. Рассматриваемое ПУ для останова грузоподъемных кранов, угоняемых силой ветра, использует клещевой захват, приводимый в действие эксцентриковым механизмом. В статье приведен расчет сил, возникающих при работе клещевого захвата, с учетом возможностей различных видов трения на контактирующих поверхностях как при отсутствии, так и при наличии смазки. Представлены расчеты эксцентрикового механизма как одного из основополагающих механизмов противоугонного кранового устройства. Чем сильнее сила ветра, тем за счет кинематической связи двух механизмов при повороте эксцентрикового механизма увеличивается давление клещевого механизма на боковые грани головки подкранового рельса. Конструктивное решение противоугонного устройства исключает какие-либо действия персонала и делает его автоматическим.
Ключевые слова
Пространственные карданные механизмы, предназначенные для передачи вращательного движения между валами, имеющие угловое перемещение, отличаются многообразием конструктивных решений. Карданные передачи представляют собой сочленение одного или нескольких универсальных шарниров и трубчатых валов. Они компенсируют осевые перемещения, а также передают крутящий момент при постоянных или переменных углах между соединяемыми агрегатами. В процессе эксплуатации карданная передача должна удовлетворительно функционировать в период установленного срока службы, т. е. соответствовать всем требованиям, вытекающими из особенностей ее использования. Поэтому для современной техники актуальна проблема совершенствования карданных передач, повышения их надежности и эргономичности на базе новых конструкторских решений, оптимизированных по динамическим параметрам, применяемым материалам, технологиям изготовления, сборки и эксплуатации. В статье представлен системный подход к созданию карданных передач нового поколения на основе исследований в области условий эксплуатации, материаловедения, технологии материалов, оптимального конструирования. Показано, что по результатам исследований создана новая серия карданных передач с повышенными техническими характеристиками.
Ключевые слова
В статье рассмотрены контактные задачи для штампа, расположенного на торце упругой полуполосы без трения под действием сосредоточенной силы. Практическим аналогом этой задачи является зона опирания балки или фермы на оголовок колонны прямоугольного сечения, так как опорные части балок или колонн обладают большой изгибной жесткостью. Расчет выполняется в два этапа. На первом вариационно-разностным методом решается задача о действии произвольно приложенной сосредоточенной силы на торец упругой полуполосы. Решение этой задачи позволяет составить квадратную матрицу вертикальных перемещений точек торца полуполосы от действия единичной силы. На втором этапе способом Жемочкина решается контактная задача для штампа, произвольно расположенного на торце упругой полуполосы. Коэффициенты канонических уравнений метода сил в способе Жемочкина находятся на основании полученной ранее матрицы вертикальных перемещений точек торца упругой полуполосы. Рассмотрены три задачи для штампов, расположенных на торце упругой полуполосы. Приводятся графики распределения контактных напряжений, эпюра изгибающих моментов и определяется положение силы, вызывающей поступательное перемещение штампа, находящегося на краю полуполосы. Отмечается подобие полученных результатов и результатов для штампа, расположенного на упругой полуплоскости.
Ключевые слова
В статье приводятся расчеты различных конструктивных схем виброизоляции здания с железобетонным каркасом от источника вибродинамического воздействия, расположенного за его пределами. Отмечается, что в большинстве исследований в качестве критерия риска повреждения несущих строительных конструкций используют максимальную величину скорости вертикальных колебаний фундамента или грунта перед ним. Выделены основные факторы, определяющие риск повреждения конструкций, к которым относятся: инженерно-геологические условия грунта в основании фундаментов, подвергающихся воздействию, степень повреждения здания, тип и конструкция здания или сооружения, частота колебаний, продолжительность действия вибрации, расстояние до источника колебаний, вид источника колебаний, материал сооружения и тип фундамента. На основании анализа факторов, определяющих риск повреждения конструкций, выделены параметры здания или сооружения, наименее чувствительного к вибродинамическим воздействиям и обладающего большей эксплуатационной надежностью. Оно должно быть с каркасом из железобетона или стали, не иметь повреждений, располагаться на фундаментах из свай-стоек в прочных маловлажных крупных песках или твердых глинах. Предлагаемые конструктивные схемы виброизоляции в основном базируются на одном из механизмов демпфирования колебаний в грунтовой среде – рассеянии на неоднородностях. В качестве основного инструмента теоретических исследований использовался метод конечных элементов. Грунтовая среда рассматривалась как упругий инерционный массив, ограниченный неотражающими границами. Достоверность его применения для расчета развития динамических процессов в системе «источник колебаний – среда распространения – приемник колебаний» была подтверждена верификацией на основании данных маломасштабных лабораторных опытов. Использование метода конечных элементов позволяет учесть пространственную изменчивость грунтовых условий, свойства материалов, конструктивные особенности зданий и сооружений, величину, направление и точку приложения динамической нагрузки, а также осуществлять моделирование и оптимизацию различных схем виброзащиты. Рассмотрены семь вариантов виброизоляции: устройство инерционной плиты на поверхности грунтовой среды между источником колебаний и зданием, установка вертикального экрана из газонаполненных баллонов под давлением, комбинация указанных способов, устройство свайного поля в грунтовой среде, усиление столбчатых плитных фундаментов здания микросваями, устройство ребристой плиты на поверхности грунтовой среды между источником и приемником колебаний, устройство железобетонной обоймы вокруг фундамента-источника колебаний. Эффективность каждого способа виброизоляции оценивалась коэффициентом демпфирования К, параметром, показывающим, во сколько раз уменьшается скорость вертикальных колебаний фундамента здания. Среди указанных выше способов виброизоляции выделены два наиболее эффективных варианта в виде горизонтальной инерционной плиты из железобетона на поверхности грунтового массива (снижение скорости вертикальных колебаний в 4,5 раза) и вертикального барьера из газонаполненных баллонов под давлением (снижение скорости вертикальных колебаний в 3,32 раза).
Ключевые слова
Исследуются результаты решения пространственных контактных задач о свободном опирании изгибаемых стержней (далее – балок) на упругие четвертьпространство и октант пространства. В задачи исследования входят: определение напряженного состояния контактных площадок, получение картины распределения по ним контактных напряжений и изучение особенностей, возникающих при решении данных контактных задач. Основной метод решения – метод Б. Н. Жемочкина, основанный на дискретизации контактных областей путем замены непрерывного контакта точечным. Такой подход позволяет свести контактную задачу к расчету статически неопределимой системы хорошо разработанными методами строительной механики. Математическая модель решаемых контактных задач строится в предположении линейно-упругой (геометрическая и физическая линейность) работы как изгибаемого элемента, так и упругого основания. Поскольку в процессе деформирования концевые участки балки могут оторваться от опорных площадок, решаемые контактные задачи относятся к группе контактных задач с заранее неизвестной областью контакта. Расчетные схемы таких задач являются конструктивно нелинейными, и их расчет ведется итерационными методами. По результатам решения рассматриваемых контактных задач обнаружено, что при геометрически симметричном опирании балки слева и справа на упругие четвертьпространства (октанты пространства) с равными опорными площадками, но различными механическими характеристиками, а также симметричном загружении значения опорных реакций, рассматривая их как равнодействующие контактных напряжений на левой и правой контактной площадке, и координаты точек их приложения не равны между собой. К подобному результату приводит и решение контактной задачи в случае опирания балки с одной стороны на упругое четвертьпространство, а с другой – на край октанта пространства. К тому же по всей длине балки появляется постоянный крутящий момент, свидетельствующий о том, что балка находится в условиях поперечного изгиба с кручением.
Ключевые слова
В статье рассмотрены сравнительные характеристики наиболее распространенных режимов тепловлажностной обработки (ТВО), их достоинства и недостатки, а также предложения по оптимизации этапов ТВО для получения максимального эффекта ускорения твердения бетона за счет использования тепловой энергии. Тепловлажностная обработка бетона – один из самых сложных этапов в технологии сборного и монолитного бетона. Основой долговечности конструкций, их бесперебойной службы в течение проектного срока эксплуатации является правильно подобранный режим ТВО, который обеспечивает повышение качества изделий и снижает материальные затраты в виде сокращения энергозатрат. Поэтому неприемлемы до сих пор практикуемые упрощенные методики подбора режима ТВО. Только при условии строгого и научно обоснованного учета комплекса факторов, оказывающих влияние на протекающие процессы формирования структуры цементного камня и бетона и взаимодействия между ними, возможно получение бетона с требуемыми характеристиками. В зависимости от требований, предъявляемых к готовому материалу на основе знания механизма тепломассопереноса, могут быть рассчитаны рациональные методы и режимы термообработки бетонных и железобетонных изделий. Разнообразие режимов ТВО обусловлено стремлением уменьшить возможность образования дефектов в структуре бетона (например, режимы со ступенчатым либо криволинейным набором температуры, что снижает градиент температур по сечению изделия), сократить энергозатраты (режимы с исключением стадии изотермической выдержки) и др. В процессе ТВО бетонных и железобетонных изделий происходит ряд химических и физических преобразований бетонной смеси (бетона), в результате которых возможно появление различных дефектов в структуре материала, ухудшающих его свойства (прочность, проницаемость, усадку, ползучесть и в целом долговечность бетона). Современная технология производства бетонных и железобетонных изделий и конструкций предусматривает введение разнообразных химических добавок, влияние которых на твердение бетона при повышенных температурах, к сожалению, недостаточно отражено в специальной литературе. Например, длительность общего цикла ТВО бетона при использовании химических добавок – ускорителей твердения может быть сокращена за счет уменьшения периодов предварительной выдержки, подъема температуры и продолжительности изотермической выдержки; а применение пластификаторов в зависимости от их вида и содержания может привести к удлинению цикла. Необходимо иметь аналитические зависимости для расчетов режимов ТВО и компьютерную модель процесса твердения бетона при повышенных температурах.
Ключевые слова
Рассмотрена прямоугольная железобетонная плита с учетом ее физической нелинейности на линейно-упругом однородном основании под действием вертикальной внешней нагрузки. Анизотропия и неоднородность плиты обусловлены свойствами железобетона, а также образованием трещин от действия произвольной нагрузки в процессе эксплуатации. Нелинейную задачу решали способом Жемочкина с использованием итерационного алгоритма метода упругих решений Ильюшина. Для определения коэффициентов разрешающих уравнений способа Жемочкина применяли метод Ритца (определение прогибов плиты с защемленной нормалью) и решение Буссинеска (определение перемещений точек поверхности упругого полупространства). На первой итерации плиту рассчитывали как линейно-упругую, ортотропную и однородную, на последующих – как линейно-упругую, анизотропную и неоднородную на каждом участке Жемочкина. Прогибы срединной поверхности плиты от единичной силы определяли в виде ряда по первым пяти частным решениям Клебша. Выполнены экспериментальные и численные исследования. Последние – с помощью компьютерной программы MATHEMATICA. Полученные результаты показали, что предлагаемая методика расчета позволяет точно описать распределение осадок и реактивных напряжений под плитой. Верификацию методики статического нелинейного расчета прямоугольной железобетонной плиты с учетом ее физической нелинейности осуществляли путем сравнения результатов расчетов максимальных осадок и средних давлений под плитой, вычисленных с использованием предлагаемой методики, и результатов, полученных с помощью метода послойного суммирования и современных программных комплексов «Лира» и PLAXIS 3D.
Ключевые слова
Как было показано в части 1 данной статьи, современное головное освещение ввиду объективных недостатков своей конструкции не всегда удовлетворяет требованиям существующих международных стандартов, что означает снижение безопасности дорожного движения. Чтобы устранить обнаруженные ранее недостатки существующего головного освещения транспортных средств, проведен анализ его перспективных конструкций, включая лазерные, матричные и пиксельные фары, фары с цифровым микрозеркальным устройством, а также фары типа Multibeam. Указанные типы фар в настоящее время либо проходят стадию производственных испытаний, либо применяются в крайне ограниченных по числу выпущенных единиц партиях транспортных средств. В соответствии с результатами данного анализа сформулированы рекомендации по конструированию перспективного головного освещения. Основной из этих рекомендаций является применение единичных мощных светодиодов с рефлекторами полного внутреннего отражения, которые позволят обеспечить резкую светотеневую границу при эффективном использовании светового потока источника. Чтобы увеличить устойчивость фары к повышению температуры, предлагается применять светодиоды или иные экономичные источники света вместе с деталями из люминофоров. Показано, что адаптивность является полезным, но необязательным свойством фар транспортных средств, так как ведет к усложнению конструкции, а это не всегда оправдано. Описаны достоинства фары, созданной с учетом приведенных рекомендаций, основными из которых являются упрощение ее конструкции, уменьшение массы и улучшение тепловых параметров изделия.