+
OSKOLKOV MODELS AND SOBOLEV-TYPE EQUATIONS
стр.5-22
This article is a review of the works carried out by the author together with her students and devoted to the study of various Oskolkov models. Their distinctive feature is the use of the semigroup approach, which is the basis of the phase space method used widely in the theory of Sobolev-type equations. Various models of an incompressible viscoelastic fluid described by the Oskolkov equations are presented. The degenerate problem of magnetohydrodynamics, the problem of thermal convection, and the Taylor problem are considered as examples. The solvability of the corresponding initial-boundary value problems is investigated within the framework of the theory of Sobolev-type equations based on the theory for -sectorial operators and degenerate semigroups of operators. An existence theorem is proved for a unique solution, which is a quasi-stationary semitrajectory, and a description of the extended phase space is obtained. The foundations of the theory of solvability of Sobolev-type equations were laid by Professor G.A. Sviridyuk. Then this theory, together with various applications, was successfully developed by his followers.
Загружаем данные из библиотечной системы...
Ключевые слова
+
СИСТЕМЫ ЛЕОНТЬЕВСКОГО ТИПА И ПРИКЛАДНЫЕ ЗАДАЧИ
стр.23-42
В статье представлен комплекс основных результатов, полученных в последние годы в аналитических и численных исследованиях различных задач для систем леонтьевского типа - конечномерного аналога уравнений соболевского типа. Ключевым фактором в достижении определенных успехов стало наличие прикладных задач, изучение каждой из которых представляло самостоятельный интерес. В статье будут представлены три математические модели, в основе которых лежит система леонтьевского типа: вырожденная балансовая динамическая модель производственного предприятия, вырожденная балансовая модель клеточного цикла, математическая модель сложного измерительного устройства. В рамках класса задач будут рассмотрены начальная задача Шоуолтера - Сидорова для системы леонтьевского типа и ряд задач оптимального управления для нее. Кратко будут изложены численные методы решения таких задач, показаны результаты о сходимости приближенных решений к точному. Особое внимание будет уделено задаче восстановления динамически искаженного входного сигнала по наблюдаемому выходному при наличии помех. Математическая модель сложного измерительного устройства построена как система леонтьевского типа, начальное состояние которой отражает условие Шоуолтера - Сидорова. Основным положением теории оптимальных динамических измерений является моделирование искомого входящего сигнала как решения задачи оптимального управления с минимизацией функционала штрафа, в котором оценивается расхождение моделируемого и наблюдаемого выходного (или наблюдаемого) сигналов. Наличие помех на выходе измерительного устройства приводит к необходимости использования в численных алгоритмах цифровых фильтров. Статья носит обзорный характер и дает целостное понимание направлений развития исследований систем леонтьевского типа.
Загружаем данные из библиотечной системы...
Ключевые слова
+
SEMILINEAR SOBOLEV TYPE MATHEMATICAL MODELS
стр.43-59
Zamyshlyaeva A.A., Bychkov E.V.
The article contains a review of the results obtained in the scientific school of Georgy Sviridyuk in the field of semilinear Sobolev type mathematical models. The paper presents results on solvability of the Cauchy and Showalter-Sidorov problems for semilinear Sobolev type equations of the first, the second and higher orders, as well as examples of non-classical models of mathematical physics, such as the generalized Oskolkov model of nonlinear filtering, propagation of ion-acoustic waves in plasma, propagation waves in shallow water, which are studied by reduction to one of the above abstract problems. Methods for studying the semilinear Sobolev type equations are based on the theory of relatively -bounded operators for equations of the first order and the theory of relatively polynomially bounded operator pencils for equations of the second and higher orders in the variable . The paper uses the phase space method, which consists in reducing a singular equation to a regular one defined on some subspace of the original space, to prove existence and uniqueness theorems, and the Galerkin method to construct an approximate solution.
Загружаем данные из библиотечной системы...
Ключевые слова
+
НЕКЛАССИЧЕСКИЕ МОДЕЛИ МАТЕМАТИЧЕСКОЙ ФИЗИКИ С МНОГОТОЧЕЧНЫМ НАЧАЛЬНО-КОНЕЧНЫМ УСЛОВИЕМ
стр.60-83
Загребина С.А., Конкина А.С.
Статья содержит обзор результатов авторов в области неклассических моделей математической физики, для которых рассмотрены многоточечные начально-конечные условия, обобщающие условия Коши и Шоуолтера - Сидорова. Напомним, что неклассическими называют те модели математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамках одного из классических типов - эллиптического, параболического или гиперболического. Абстрактные результаты проиллюстрированы конкретными многоточечными начально-конечными задачами в различных постановках для уравнений в частных производных, возникающих в последнее время в приложениях. В том числе рассмотрены неавтономная модель Чена - Гетина с комплексными коэффициентами, стохастическая эволюционная модель Девиса, макромодель транспортного потока на перекрестке, основанная на уравнениях Осколкова, рассмотренных в системе геометрических графов, учитывающих условие непрерывности, баланса потока и условие запрета на движение.
Загружаем данные из библиотечной системы...
Ключевые слова
+
ПОЛУЛИНЕЙНЫЕ МОДЕЛИ СОБОЛЕВСКОГО ТИПА. НЕЕДИНСТВЕННОСТЬ РЕШЕНИЯ ЗАДАЧИ ШОУОЛТЕРА - СИДОРОВА
стр.84-100
Манакова Н.А., Гаврилова О.В., Перевозчикова К.В.
Статья имеет обзорный характер и содержит результаты исследования морфологии фазовых пространств полулинейных моделей соболевского типа. Представлены исследования тех математических моделей, чьи фазовые пространства лежат на гладких банаховых многообразиях с особенностями в зависимости от параметров задачи, а именно, модели Хоффа, модели Плотникова, модели распределенного брюсселятора и модели распространения нервного импульса. В первой части статьи приведены условия, при которых фазовые многообразия изучаемых моделей - простые гладкие банаховы многообразия, из чего вытекает единственность решения задачи Шоуолтера - Сидорова. Во второй части статьи приведены условия, при которых фазовые многообразия исследуемых моделей содержат особенности, из чего вытекает неединственность решения задачи Шоуолтера - Сидорова.
Загружаем данные из библиотечной системы...
Ключевые слова
+
INVARIANT MANIFOLDS OF SEMILINEAR SOBOLEV TYPE EQUATIONS
стр.101-111
The article is devoted to a review of the author's results in studying the stability of semilinear Sobolev type equations with a relatively bounded operator. We consider the initial-boundary value problems for the Hoff equation, for the Oskolkov equation of nonlinear fluid filtration, for the Oskolkov equation of plane-parallel fluid flow, for the Benjamin-Bon-Mahoney equation. Under an appropriate choice of function spaces, these problems can be considered as special cases of the Cauchy problem for a semilinear Sobolev type equation. When studying stability, we use phase space methods based on the theory of degenerate (semi)groups of operators and apply a generalization of the classical Hadamard-Perron theorem. We show the existence of stable and unstable invariant manifolds modeled by stable and unstable invariant spaces of the linear part of the Sobolev type equations in the case when the phase space is simple and the relative spectrum and the imaginary axis do not have common points.
Загружаем данные из библиотечной системы...
Ключевые слова
+
SOBOLEV TYPE EQUATIONS IN SPACES OF DIFFERENTIAL FORMS ON RIEMANNIAN MANIFOLDS WITHOUT BOUNDARY
стр.112-122
The article contains a review of the results obtained by the author both independently and in collaboration with other members of the Chelyabinsk scientific school founded by G.A. Sviridyuk and devoted to Sobolev-type equations in specific spaces, namely the spaces of differential forms defined on some Riemannian manifold without boundary. Sobolev type equations are nonclassical equations of mathematical physics and are characterized by an irreversible operator at the highest derivative. In our spaces, we need to use special generalizations of operators to the space of differential forms, in particular, the Laplace operator is replaced by its generalization, the Laplace-Beltrami operator. We consider specific interpretations of equations with the relatively bounded operators: linear Barenblatt-Zheltov-Kochina, linear and semilinear Hoff, linear Oskolkov ones. For these equations, we investigate the solvability of the Cauchy, Showalter-Sidorov and initial-final value problems in different cases. Depending on the choice of the type of equation (linear or semi-linear), we use the corresponding modification of the phase space method. In the spaces of differential forms, in order to use this method based on domain splitting and the actions of the corresponding operators, the basis is the Hodge-Kodaira theorem on the splitting of the domain of the Laplace-Beltrami operator.
Загружаем данные из библиотечной системы...
Ключевые слова
+
ГЕОРГИЙ АНАТОЛЬЕВИЧ СВИРИДЮК (К ЮБИЛЕЮ)
стр.123-127
Брычев С.В., Бычков Е.В., Гаврилова О.В., Загребин М.А., Загребина С.А., Замышляева А.А., Казак В.О., КЕЛЛЕР А.В., Китаева О.Г., Конкина А.С., Манакова Н.А., Мухаметьярова А.А., Перевозчикова К.В., Сагадеева М.А., Солдатова Е.А., Соловьева Н.Н., Сукачева Т.Г., Худяков Ю.В., Цыпленкова О.Н., Шафранов Д.Е.
Загружаем данные из библиотечной системы...
+
РУДАКОВ КОНСТАНТИН ВЛАДИМИРОВИЧ (21.06.1954 - 10.07.2021)
стр.128-130
Чернышёв С.Л., Баженова И.Г., Богомолов А.В., Булдакова Т.И., Гаврилов С.В., Галяев А.А., Грибова В.В., Грушо А.А., ЖИЛЯКОВ Е.Г., Замятин А.В., Каперко А.Ф., Кибзун А.И., Козлов В.Н., Крищенко А.П., Кулешов С.В., Лазарева Г.Г., Ларкин Е.В., Леденева Т.М., Мартинов Г.М., Меньших В.В.
Загружаем данные из библиотечной системы...