+
МОДЕЛЬ РАСЧЕТА УПОРНОГО ПОДШИПНИКА СКОЛЬЖЕНИЯ С ЛАЗЕРНЫМ ТЕКСТУРИРОВАНИЕМ НЕСУЩЕЙ ПОВЕРХНОСТИ
стр.5-23
Рождественский Ю.В., Задорожная Е.А., Чернейко С.В.
Представлен краткий анализ современных работ, посвященных изучению упорных гидродинамических подшипников, на несущей поверхности которых выполнено текстурирование, обеспечивающее снижение износа сопряжения в целом. Разработана математическая модель расчета гидромеханических характеристик упорного подшипника скольжения с лазерным текстурированием сегментов. Адекватность разработанной математической модели продемонстрирована на примере сравнения экспериментальных и расчетных результатов. Численными экспериментами установлено приемлемое значение параметра сходимости многосеточного метода и количество сеточных уровней, применяемых при выполнении расчетов. Было выполнено сравнение двух возможных типов сегментов: ступенька Рэлея, поверхность с лазерным текстурированием. Результаты расчета показали преимущество метода лазерного текстурирования для повышения несущей способности упорного подшипника скольжения.
Загружаем данные из библиотечной системы...
Ключевые слова
+
Chentsov A.G., Salii Ya.V.
Загружаем данные из библиотечной системы...
Ключевые слова
+
МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ РАСПРЕДЕЛЕНИЯ КОЛЛОИДНЫХ ЧАСТИЦ И ПРОФИЛЯ ПЛЕНКИ ПРИ ИСПАРЕНИИ ПОД ДИСКОМ
стр.46-52
Водолазская И.В., Герасимова А.Ю.
В работе предлагается модель для расчета распределения объемной плотности растворенных сферических частиц и профиля поверхности высыхающей на горизонтальной подложке пленки коллоидного раствора, над которой располагается диск, ограничивающий испарение. Модель базируется на приближении The Lubrication approximation уравнения Навье-Стокса, законе сохранения растворителя и уравнении конвекции-диффузии. По мере высыхания пленки в тех областях, где объемная доля частиц достигает определенного значения, появляется твердая фаза, сохраняющая форму. В модели принято, что область твердой фазы ограничивает внутренние гидродинамические потоки и поток испарения с поверхности. В жидкой фазе вязкость раствора и коэффициент диффузии растворенных частиц зависят от объемной плотности этих частиц. Плотность потока пара с поверхности пленки при наличии над ней диска определяется путем численного решения уравнения Лапласа для концентрации пара в пространстве, окружающем пленку. Расчет модели показывает, что высыхание пленки происходит неравномерно. На первом этапе испарения пленка вне диска быстро затвердевает, формируя на подложке слой твердого осадка одинаковой толщины. При этом в области под диском раствор остается жидким, течения выносят твердые частицы к краю области. При дальнейшем испарении формируется профиль пленки под диском, где после полного затвердевания в слое твердого осадка наблюдается впадина.
Загружаем данные из библиотечной системы...
Ключевые слова
+
ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ ТВЕРДЫХ ТЕЛ МЕТОДАМИ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ
стр.53-65
Липанов А.М., Вахрушев А.В., Федотов А.Ю.
Высокоскоростное ударное нагружение твердых тел находит широкое применение в технике, промышленности, военном деле. При рассмотрении данного процесса главной задачей является изучение степени разрушения и фрагментации взаимодействующих твердых тел на основе расчета и анализа напряженно-деформированного состояния. Основными прикладными задачами исследований являются: разрушение и фрагментация преграды, вид разрушения, процессы откольного разрушения, величины перегрузок, интегральные силы сопротивления внедрению, конечные глубины проникновения, скорости при сквозном разрушении твердых тел, исследования влияния армирования на процессы разрушения, конфигурации зоны ударного взаимодействия, движения твердого тела в преграде и запреградном пространстве. Анализ экспериментальных данных показывает, что с изменением параметров ударяющего тела и свойств преграды, существенно меняются механизмы разрушения. Поэтому моделирование данных процессов является весьма актуальной задачей. Моделирование процессов проникновения и разрушения, как правило, выполняется, вследствие их сложности и взаимосвязанности, численными методами, методом конечных элементов и методом гладких (сглаженных) частиц. В работе описывается методология процессов взаимодействия снаряда с преградой. Математическая модель взаимодействия включает в себя законы сохранения массы, импульса и энергии, уравнения состояния вещества, модели напряженно-деформируемых состояний материалов. Численная модель основывается на аппроксимации основных законов сохранения явными уравнениями Эйлера. Взаимодействующие тела рассматриваются как совокупность частиц, обладающих определенными физико-механическими свойствами. Данная модель получила название метода сглаженных частиц SPH (Smoothed Particle Hydrodynamics) и широко используется при интенсивном динамическом нагружении тел, когда имеет место существенное изменение топологии моделируемых объектов. Приводятся результаты моделирования твердых тел.
Загружаем данные из библиотечной системы...
Ключевые слова
+
ANALYSIS OF SOCIO-ECONOMIC SYSTEM PROCESSES PERFORMANCE WITH THE HELP OF EIGENSTATE MODELS
стр.66-75
Mokeyev V.V., Vorobiev D.A.
Загружаем данные из библиотечной системы...
Ключевые слова
+
CONSTRUCTION OF APPROXIMATE MATHEMATICAL MODELS ON RESULTS OF NUMERICAL EXPERIMENTS
стр.76-87
Tenenev V.A., Rusyak I.G., Sufiyanov V.G., Ermolaev M.A., Nefedov D.G.
A mathematical model of an artillery shot is represented as a system of non-stationary one- and two-dimensional differential equations of the multiphase gas dynamics and heat transfer. Conjunction Euler-Lagrange method is used for the numerical solution of gas-dynamic equations. The initial mathematical model is approximated by a system of ordinary differential equations using a vector of correction functions. Correction functions are found from solutions of multiobjective optimal control problem. Multiobjective optimization is carried out using a hybrid genetic algorithm. The resulting model is adequate and allows doing more processing series of calculations the main process parameters (projectile velocity and maximum pressure) depending on the input parameters. Comparative analysis of different approximators (linear multiple regression, support vector machines, multi-layer neural network, radial network, the method of fuzzy decision trees) showed that an acceptable accuracy 0,4-0,5 % is provided by only non-linear approximation methods, such as multi-layer and radial neural networks. Constructed approximate models are not require much computing time and can be implemented in the control systems.
Загружаем данные из библиотечной системы...
Ключевые слова
+
МАТЕМАТИЧЕСКИЕ МОДЕЛИ РАССЕИВАЮЩИХ ДИЭЛЕКТРИЧЕСКИХ ОБЪЕКТОВ
стр.88-99
Предложены базовые операторы в составе общего функционального матричного оператора с блочной структурой для построения математических моделей сложных диэлектрических объектов. Формулировка краевых задач в виде систем интегральных уравнений удовлетворяет граничным условиям и условию излучения Зоммерфельда. Использовано асимптотическое соответствие решения трехмерных и двумерных задач рассеяния электромагнитных полей для перехода к задачам с плоскостной симметрией. Показано, что такое соответствие значительно расширяет возможности математического моделирования в задачах рассеяния электромагнитных полей на сложных диэлектрических объектах. Базовый матричный оператор формулируется как обобщение системы интегральных уравнений для двумерной однородной области, ограниченной гладким контуром. Разработан формализованный метод формирования функциональных матричных операторов для исследования математических моделей двумерных объектов, образованных совокупностью отдельных однородных областей. Показано, что в ряде случаев использование функциональных матричных операторов для многослойных однородных областей, интерполирующих неоднородные диэлектрические области, предпочтительнее для численного исследования. Результаты решения тестовой задачи рассеяния плоской волны на однородном диэлектрическом цилиндре показывают высокую эффективность предложенной математической модели. С учетом блочной структуры функциональных матричных операторов предложена рациональная организация обобщенной матрицы математической модели.
Загружаем данные из библиотечной системы...
Ключевые слова
+
THE MATHEMATICAL MODELLING OF THE PRODUCTION OF CONSTRUCTION MIXTURES WITH PRESCRIBED PROPERTIES
стр.100-110
Shestakov A.L., Sviridyuk G.A., Butakova M.D.
We propose a method for the mathematical modelling of the preparation of construction mixes with prescribed properties. The method rests on the optimal control theory for Leontieff-type systems. Leontieff-type equations originally arose as generalizations of the well-known input-output model of economics taking supplies into account. Then they were used with success in dynamical measurements, therefore giving rise to the theory of optimal measurements. In the introduction we describe the ideology of the proposed model. As an illustration, we use an example of preparing of simple concrete mixes. In the first section we model the production process of similar construction mixtures (for instance, concrete mixtures) depending on investments. As a result, we determine the price of a unit of the product. In the second section we lay the foundation for the forthcoming construction of numerical algorithms and software, as well as conduction of simulations. Apart from that, we explain the prescribed properties of construction mixes being optimal with respect to expenses.
Загружаем данные из библиотечной системы...
Ключевые слова
+
НЕКОТОРЫЕ ОБОБЩЕНИЯ ТЕОРИИ ШЕННОНА О СОВЕРШЕННЫХ ШИФРАХ
стр.111-127
К. Шеннон в 40-х годах XX века ввел понятие совершенного шифра, обеспечивающего наилучшую защиту открытых текстов. Такой шифр не дает криптоаналитику никакой дополнительной информации об открытом тексте на основе перехваченной криптограммы. При этом хорошо известный шифр гаммирования с равновероятной гаммой является совершенным, но максимально уязвимым к попыткам имитации и подмены. Это происходит потому, что в шифре гаммирования алфавиты для записи открытых и шифрованных текстов равномощны. Также в данном шифре должны использоваться равновероятные гаммы, что не всегда достигается на практике. В данной обзорной работе рассматриваются задачи построения совершенных и (k|y)-совершенных шифров по заданному набору параметров, приводятся необходимые и достаточные условия данных шифров, рассматриваются совершенные и (k|y)-совершенные шифры замены с неограниченным ключом, а также совершенные шифры, стойкие к имитации и подмене шифрованных сообщений с необязательно равномерным распределением на множестве ключей.
Загружаем данные из библиотечной системы...
Ключевые слова
+
MATHEMATICAL MODEL OF A SUCCESSFUL STOCK MARKET GAME
стр.128-131
Vereschagina T.A., Yakupov M.M., Khen V.K.
All available predictive models of stock market trade (like regression or statistical analysis, for instance) are based on studying of price fluctuation. This article proposes a new model of a successful stock market strategy based on studying of the behavior of the largest successful players. The main point of this model is that a relatively weak player repeats the actions of stronger players in the same fashion as in a race after leader a cyclist following a motorbike reaches greater velocity. We represent the leader as a vector in the nonnegative orthant Rn+ depending on the most successful traders (hedge funds). When buying and selling stocks, we should always keep the vector of own resources collinear to the leader's. This strategy will not yield significant profit, but it prevents considerable loss.
Загружаем данные из библиотечной системы...
Ключевые слова
+
THE MULTIPOINT INITIAL-FINAL VALUE CONDITION FOR THE NAVIER - STOKES LINEAR MODEL
стр.132-136
Zagrebina S.A., Konkina A.S.
The Navier - Stokes system models the dynamics of a viscous incompressible fluid. The problem of existence of solutions of the Cauchy - Dirichlet problem for this system is included in the list of the most serious problems of this century. In this paper it is proposed to consider the multipoint initial-final conditions instead of the Cauchy conditions. It should be noted that nowadays the study of solvabilityof initial-final value problems is a new and actively developing direction of the Sobolev type equations theory. The main result of the paper is the proof of unique solvability of the stated problem for the system of Navier - Stokes equations.
Загружаем данные из библиотечной системы...
Ключевые слова
+
ON ONE SOBOLEV TYPE MATHEMATICAL MODEL IN QUASI-BANACH SPACES
стр.137-142
Zamyshlyaeva A.A., Al Helli
The theory of Sobolev type equations experiences an epoch of blossoming. In this article the theory of higher order Sobolev type equations with relatively spectrally bounded operator pencils, previously developed in Banach spaces, is transferred to quasi-Banach spaces. We use already well proved for solving Sobolev type equations phase space method, consisting in reduction of singular equation to regular one defined on some subspace of initial space. The propagators and the phase space of complete higher order Sobolev type equations are constructed. Abstract results are illustrated by specific examples. The Boussinesq-Love equation in quasi-Banach space is considered as application.
Загружаем данные из библиотечной системы...
Ключевые слова
+
ИНФОРМАЦИОННОЕ СООБЩЕНИЕ
стр.143-146
Загружаем данные из библиотечной системы...