В работах профессора А.Н. Артемова исследован синтез хромсодержащих изоксазолидинов реакцией 1,3-диполярного циклоприсоединения, продемонстрировано повышение цис/транс-селективности при введении хромтрикарбонильной группы в молекулы диполей и диполярофилов. Аренхромтрикарбонильные производные шестичленных гетероциклов с N-C-O связями, как и их пятичленные аналоги, можно получить реакцией между свободными от хромтрикарбонильной группы гетероциклами, а также в результате конденсации хромсодержащих аминоспиртов с карбонильными соединениями. Изучен синтез би- и полиметаллоорганических соединений в реакциях металлоорганических галогенидов с различными непереходными металлами. Такие реакции позволяют в одностадийном процессе получать соединения, содержащие ковалентные связи металлов 12-15 групп (Mg, Zn, Cd, In, Tl, Sn, Pb, Bi) c непереходными элементами (Fe, Mo, W). В качестве регуляторов полимеризации по механизму обратимого ингибирования для виниловых мономеров исследованы стиролхромтрикарбонил, пара -метилстиролхромтрикарбонил, α-метилстиролхромтрикарбонил, стильбенхромтрикарбонил, аллилбензолхромтрикарбонил, дифенилбутадиенхромтрикарбонил. α-метилстиролхромтрикарбонил, дифенилбутадиенхромтрикарбонил, аллилбензолхромтрикарбонил. При введении их в полимеризующуюся массу метилметакрилата, бутилакрилата, стирола в количествах, соизмеримых с концентрацией инициатора, они контролируют обрыв полимерной цепи при температурах не выше 100 °С. При этом процесс протекает с достаточно высокой скоростью, и контроль роста цепи идет по механизму обратимого ингибирования. Газофазное разложение бис -этилбензолхрома может протекать с образованием твердых и износостойких хромкарбидных покрытий, так и с получением пленок хрома, отличающихся низким температурным коэффициентом сопротивления.

Вестник Южно-Уральского государственного университета. Серия: Химия
2024. — Выпуск 2
Содержание:
Цианоауратные комплексы представляют собой широкий класс соединений, обладающих разнообразной структурой и множеством потенциальных практических приложений, включая такие области, как микроэлектроника, нанотехнологии, материаловедение, медицина. В отличие от цианоауратов металлов, комплексы только с органическими катион-радикалами и ониевыми/иниевыми катионами не обладают координационно-полимерным строением - их кристаллическая структура обуславливается лишь нековалентными взаимодействиями между структурными единицами. Отсутствие четко выраженных координационных центров для упорядочивания цианоауратных анионов накладывает некоторые ограничения на возможности синтетиков предсказать итоговую структуру новых комплексов, а также их физико-химические свойства. И тем не менее известно, что данные соединения обладают полезными проводящими/диэлектрическими, магнитными, эмиссионными и оптическими свойствами, что обуславливает интерес у химиков к данному классу производных золота. Настоящий обзор, включающий в себя описание современных достижений в области методов синтеза, исследовании особенностей строения и возможности практического использования ди-, тетра- и дигалогендицианоауратных комплексов с органическими катион-радикалами и ониевыми/иниевыми катионами, основан на анализе литературы, большая часть которой была опубликована до 2022 г. Некоторые более поздние работы также представлены в обзоре. Представленные в данной работе сведения имеют фундаментальный характер и могут быть полезны для специалистов в области неорганической и элементоорганической химии золота.
Ключевые слова
Строение карбоксилатов тетрафенилсурьмы Ph4SbOC(O)R [R = CH2Cl (1), CH2Br (2), CH2l (3), C6H3F2-2,3) (4)] и нитрата Ph4SbONO2 ∙ H2O (5) установлено методом рентгеноструктурного анализа (РСА). По данным РСА, атомы сурьмы в комплексах 1-5 имеют координацию искаженной тригональной бипирамиды с электроотрицательным лигандом в аксиальном положении. Аксиальные углы CSbО составляют 174,05(7); 171,6(2), 170,3(2); 173,10(12); 177,93(5); 178,02(9), 168,11(9), 169,33(9)° соответственно. Данные РСА: (1) [C26H22O2ClSb, M = 523,64; ромбическая сингония, пр. гр. Pbca; параметры ячейки: a = 14,382(8) Å, b = 16,681(10) Å, c = 19,270(11) Å; β = 90,00°, V = 4623(5) Å3, Z = 8; r(выч.) = 1,505 г/см3; m = 1,328 мм-1; F(000) = 2096,0; обл. сбора по 2q: 5,64-56,6°; -19 ≤ h ≤ 19, -22 ≤ k ≤ 21, -23 ≤ l ≤ 25; всего отражений 69348; независимых отражений 5710 (Rint = 0,0398); GOOF = 1,067; R-фактор 0,0261]; (2) [C52H46O4Br2Sb2, M = 1138,19; триклинная сингония, пр. гр. P-1; параметры ячейки: a = 11,096(13) Å, b = 12,510(13) Å, c = 17,62(2) Å; a = 78,01(6)°, β = 89,35(7)°, g = 89,71(5)°, V = 2393(5) Å3, Z = 2; r(выч.) = 1,577 г/см3; m = 2,841 мм-1; F(000) = 1120,0; обл. сбора по 2q: 5,16-69,06°; -16 ≤ h ≤ 16, -14 ≤ k ≤ 14, -23 ≤ l ≤ 23; всего отражений 89320; независимых отражений 11788 (Rint = 0,0568); GOOF = 1,034; R-фактор 0,0519]; (3) [C26H22O2SbI, M = 615,09; моноклинная сингония, пр. гр. P21/c; параметры ячейки: a = 12,779(6) Å, b = 10,864(4) Å, c = 17,542(9) Å; β = 100,18(3)°, V = 2397(2) Å3, Z = 4; r(выч.) = 1,704 г/см3; m = 2,458 мм-1; F(000) = 1192,0; обл. сбора по 2q: 6,02-71,46°; -20 ≤ h ≤ 20, -17 ≤ k ≤ 17, -28 ≤ l ≤ 28; всего отражений 70960; независимых отражений 11043 (Rint = 0,0510); GOOF = 1,018; R-фактор 0,0537]; (4) [C31H23O2F2Sb, M = 587,24; триклинная сингония, пр. гр. P-1; параметры ячейки: a = 9,862(13) Å, b = 10,154(13) Å, c = 14,298(2) Å; a = 84,03(6)°, β = 82,76(7)°, g = 68,41(5)°, V = 1318,2(5) Å3, Z = 2; r(выч.) = 1,479 г/см3; m = 1,086 мм-1; F(000) = 588,0; обл. сбора по 2q: 6,08-74,28°; -16 ≤ h ≤ 16, -17 ≤ k ≤ 17, -24 ≤ l ≤ 24; всего отражений 88852; независимых отражений 13477 (Rint = 0,0353); GOOF = 1,026; R-фактор 0,0359]; (5) [C72H62N3O10Sb3, M = 1494,50; моноклинная сингония, пр. гр. P21/n; параметры ячейки: a = 23,072(7) Å, b = 10,427(3) Å, c = 27,040(10) Å; β = 95,860(13)°, V = 6472(4) Å3, Z = 4; r(выч.) = 1,534 г/см3; m = 1,305 мм-1; F(000) = 2992,0; обл. сбора по 2q: 5,6-62,16°; -33 ≤ h ≤ 29, -15 ≤ k ≤ 15, -39 ≤ l ≤ 39; всего отражений 228547; независимых отражений 20667 (Rint = 0,0432); GOOF = 1,041; R-фактор 0,0303]. Полные таблицы координат атомов, длин связей и валентных углов соединений 1-5 депонированы в Кембриджском банке структурных данных.
Ключевые слова
Установлено, что в реакциях с пентафенилсурьмой 2,3-дигидроксибензойная и 5-гидроксипиридин-2-карбоновая кислоты проявляют себя как бифункциональные соединения и образуют биядерные продукты [Ph4Sb]+[Ph4Sb(O,O¢-C6H3COOH-3]- (I), Ph4SbOC(O)C5H3NOSbPh4-4 (II) соответственно. Реакция с 2,3-дигидроксибензойной кислотой протекает с участием только гидроксигрупп, с 5-гидроксипиридин-2-карбоновой кислотой - с участием гидрокси- и карбокси-групп. 2,6-Дигидроксибензойная кислота реагирует с пента( пара -толил)сурьмой только по карбоксильной группе, давая 2,6-дигидроксибензоат тетра( пара -толил)сурьмы p -Tol4SbOC(O)C6H3(OH)2-2,6 (III). Строение соединений I-III охарактеризовано методами ИК-спектроскопии и рентгеноструктурного анализа (РСА). По данным РСА, в кристалле I присутствуют катионы [Ph4Sb]+ с искаженной тетраэдрической координацией атома сурьмы (углы CSbC 99,18(14)°-118,07(16)°, связи Sb-С 2,093(4)-2,119(3) Å) и анионы, содержащие пятичленный металлоцикл [SbO2C2], в котором атом сурьмы гексакоординирован ( цис- углы CSbC 91,52(13)°-102,90(13)°; CSbО 85,06(12)°-94,73(13)°, ОSbО 76,22(9)°). Расстояния Sb-О в цикле составляют 2,122(2) и 2,215(2) Å. Связи Sb-С варьируют в интервале 2,175(3)-2,187(4) Å. В молекуле II атомы сурьмы структурно неэквивалентны. Один из атомов, связанный с атомом кислорода гидроксигруппы, имеет координацию искаженной тригональной бипирамиды (аксиальный угол ОSbC 174,5(2)°, углы CSbC в экваториальной плоскости 116,2(3)-120,9(3)°; расстояния Sb-О и Sb-С равны 2,256(5) Å и 2,108(7)-2,174(7) Å соответственно). Координационное число второго атома сурьмы, связанного с кислородом карбоксильной группы, увеличено до 6 за счет координации атома азота пиридинового цикла, расположенного в орто -положении по отношению к карбоксильной группе (расстояние Sb×××N равно 2,402(6) Å). Координационный полиэдр атома - искаженный октаэдр ( цис- углы при атоме сурьмы изменяются в интервале 72,22(19)°-103,6(3)°). Длина связи Sb-О равна 2,194(5) Å, расстояния Sb-С составляют 2,165(7)-2,189(7) Å. В молекуле III координация атома сурьмы - искаженная тригональная бипирамида: аксиальный угол ОSbC 170,30(8)°, углы CSbC в экваториальной плоскости 112,17(9)°-122,09(9)°; связи Sb-О 2,527(2) Å, Sb-С 2,031(2)-2,258(3) Å.
Ключевые слова
Реакцией эквимолярных количеств бромидов тетраорганилфосфония с аренсульфоновыми кислотами в воде с выходом до 89 % получены ионные аренсульфонаты тетраорганилфосфония [Ph3PCH2CH=CHCH2PPh3][OSO2C9H3N(OH-4)(I-7)]2 ∙ 4H2O (1), [Ph3P(CH2)5PPh3][OSO2С6H4(COOH-2)][Br] (2). Особенности строения комплексов 1, 2 установлены методом РСА. Кристаллы 1 [C58H54I2N2O12P2S2, M 1350,89; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 9,506(8), b = 11,323(12), c = 13,662(10) Å; a = 82,21(4)°, β = 89,26(2)°, g = 72,60(4)°, V = 1390(2) Å3, Z = 2; rвыч = 1,614 г/см3], 2 [C48H45O5P2SBr, M 875,75; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 10,307(7), b = 14,226(9), c = 16,291(10) Å; a = 67,07(3)°, β = 83,74(3)°, g = 74,65(3)°, V = 2122(2) Å3, Z = 2; rвыч = 1,371 г/см3] состоят из катионов тетраорганилфосфония и аренсульфонатных анионов с тетраэдрическим атомом серы. В кристалле комплекса 2 присутствуют также анионы [Br]-. Длины связей P-C варьируют в интервале 1,779(3)-1,815(4) Å. Валентные углы СРС принимают значения 104,33(15)-112,00(10)°. Расстояния S-О изменяются в пределах 1,4397(18)-1,4576(19) Å. Полные таблицы координат атомов, длин связей и валентных углов для структур депонированы в Кембриджском банке структурных данных
Ключевые слова
Реакцией эквимолярных количеств бромидов алкилтрифенилфосфония с органосульфоновыми кислотами в воде с выходом до 90 % получены органосульфонаты алкилтрифенилфосфония [Ph3PC6H11-cyclo][OSO2CF3] (1), [Ph3PCH2CN][OSO2CF3] (2), [Ph3PC6H11-cyclo][OSO2C6H3(NO2)2-2,4] (3), [Ph3PCH2С6H4(OH-2)][OSO2C6H3Me2-2,5] (4), [Ph3P(CH2)4Br][OSO2C6H3Me2-2,5] (5). Строение комплексов 1-5 установлено элементным анализом и методом ИК-спектроскопии.
Ключевые слова
Из ферроцендикарбоновой кислоты, сульфосалициловой кислоты и пентаарилсурьмы Ar5Sb (Ar = Ph, p-Tol) в бензоле получены сполна замещенные сурьмаорганические производные ферроцендикарбоновой и сульфосалициловой кислот 1-3, строение которых после перекристаллизации из смеси бензол-октан доказано методом рентгеноструктурного анализа. Строение 1-3 установлено методом РСА. Кристаллы 1 [C68H64FeO4Sb2, M 1244,54; сингония моноклинная, группа симметрии С21/с; параметры ячейки: a = 16,9983(2), b = 10,94570(10), c = 30,3224(3) Å; β = 99,8220(10)°; V = 5559,04(10) Å3; Z = 4; rвыч = 1,487 г/см3; 2q 5,28-138,76 град.; всего отражений 32707; независимых отражений 10281; число уточняемых параметров 684; Rint = 0,0496; GOOF 1,062; R1 = 0,0345, wR2 = 0,0853; остаточная электронная плотность (max/min); 0,76/-0,90 e/Å3], 2 [C60H48FeO4Sb2, M 1132,33; сингония моноклинная, группа симметрии P21/n; параметры ячейки: a = 12,40720(10), b = 10,30830(10), c = 36,7290(4) Å; β = 94,1110(10) град., V = 4685,45(8) Å3, Z = 4; rвыч = 1,605 г/см3; 2q 4,82-138,56 град.; всего отражений 27748; независимых отражений 8680; число уточняемых параметров 604; Rint = 0,0367; GOOF 1,033; R1 = 0,0277, wR2 = 0,0709; остаточная электронная плотность (max/min); 0,86/-0,81 e/Å3], 3 [C63H62O7SSb2, M 1206,78; сингония моноклинная, группа симметрии P21/c; параметры ячейки: a = 20,9246(3), b = 13,5375(2), c = 21,4222(3) Å; β = 111,284(2) град., V = 5654,30(16) Å3, Z = 4; rвыч = 1,4175 г/см3; 2q 4,54-160 град.; всего отражений 48463; независимых отражений 11892; число уточняемых параметров 699; Rint = 0,0443; GOOF 1,024; R1 = 0,0327, wR2 = 0,0907; остаточная электронная плотность (max/min); 0,93/-0,85 e/Å3]. Атомы сурьмы в молекулах 1, 2 имеют с учетом координации карбонильных атомов кислорода на атом металла искаженную октаэдрическую конфигурацию. В структуре 3 присутствуют тетраэдрические тетраарилстибониевые катионы, атомы сурьмы в которых координированы с атомами кислорода сульфогрупп (Sb∙∙∙O(5)=S 2,601 Å), причем этот же атом кислорода координирован с орто-атомом водорода одной из толильных групп (Н(46)∙∙∙O(5)=S 2,60 Å). Молекулы воды структурируют кристалл 3 (Н(7)∙∙∙O(4)=S 1,98 Å, Н(7)∙∙∙O(5)=S 2,6 Å).
Ключевые слова
Бис[3,4-дифторбензоат] трис(2-метоксифенил)сурьмы (1) и бис[бензолсульфонат] трис(2-метоксифенил)сурьмы (2) получены по реакции окислительного присоединения из триарилсурьмы и 3,4-дифторбензойной/бензолсульфоновой кислоты в присутствии гидропероксида третичного бутила в эфире. Строение 1 и 2 установлено методами ИК-спектроскопии и рентгеноструктурного анализа (РСА). Кристаллы 1 [C35H27O7F4Sb, M 757,32; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 9,219(4), b = 9,507(6), c = 20,240(11) Å; a = 99,43(3)°, β = 95,756(16)°, g = 107,90(3)°; V = 1643,6(16) Å3; Z = 2; rвыч = 1,530 г/см3; 2q 6,68-54,98 град.; всего отражений 31858; независимых отражений 7153; число уточняемых параметров 427; Rint = 0,0429; GOOF 1,051; R1 = 0,0265, wR2 = 0,0551; остаточная электронная плотность (max/min); 0,30/-0,44 e/Å3], 2 [C33H31O9S2Sb, M 757,46; сингония моноклинная, группа симметрии С2/с; параметры ячейки: a = 21,157(9), b = 10,363(4), c = 18,285(7) Å; β = 126,590(13) град., V = 3219(2) Å3, Z = 1; rвыч = 1,563 г/см3; 2q 6,012-54,234 град.; всего отражений 32454; независимых отражений 3541; число уточняемых параметров 231; Rint = 0,0283; GOOF 1,161; R1 = 0,0283, wR2 = 0,0659; остаточная электронная плотность (max/min); 0,74/-0,83 e/Å3] состоят из тригонально-бипирамидальных молекул с электроотрицательными лигандами в аксиальных положениях. Длины связей Sb-C варьируют в интервале 2,093(2)-2,125(3) Å, валентные углы OSbO принимают значения 176,63(6) и 174,52(10)° соответственно. Расстояния Sb-О в 1 (2,1106(17) и 2,1149(17) Å) короче, чем в 2 (2,128(2) и 2,128(2) Å). Внутримолекулярные контакты Sb∙∙∙O в 1 (3,162(2) и 3,257(2) Å) значительно меньше, чем в 2 (3,617(2) и 3,617(2) Å), и не превышают сумму их ван-дер-ваальсовых радиусов (3,7 Å). Полные таблицы координат атомов, длин связей и валентных углов для структур депонированы в Кембриджском банке структурных данных.
Ключевые слова
Из бромидов алкилтрифенилфосфония и 7-иод-8-оксихинолин-5-сульфоновой кислоты в воде получены и структурно охарактеризованы ионные 7-иод-8-оксихинолин-5-сульфонаты алкилтрифенилфосфония [Ph3PAlk][OSO2C9NH4(I-7)(OH-8)], Alk = CH2Ph (1), CH=CHMe (2), CH2C≡CH (3). Кристаллы 1 [C34H27NO4PSI, M 703,50; сингония моноклинная, группа симметрии P21/c; параметры ячейки: a = 8,805(4), b = 16,146(10), c = 20,833(11) Å; β = 93,410(17), V = 2956(3) Å3, Z = 4; rвыч = 1,581 г/см3], 2 [C30H25NO4PSI, M 653,44; сингония ромбическая, группа симметрии P212121; параметры ячейки: a = 9,382(3), b = 14,033(4), c = 21,035(6) Å; a = β = g = 90,00 град., V = 2769,5(15) Å3, Z = 4; rвыч = 1,567 г/см3], 3 [C30H27NO6PSI, M 687,46; сингония моноклинная, группа симметрии P21/n; параметры ячейки: a = 9,426(3), b = 19,239(5), c = 16,088(5) Å; β = 97,296(14) град., V = 2894,0(15) Å3, Z = 4; rвыч = 1,578 г/см3]. По данным РСА, атомы фосфора в катионах 1-3 имеют искаженную тетраэдрическую координацию, сульфонатные анионы обладают обычной геометрией с тетраэдрическим атомом серы. Длины связей Р-С изменяются в интервале 1,772(3)-1,815(2) Å; валентные углы СРС принимают значения 106,08(11)°-112,33(11)°. В аренсульфонатных анионах комплексов расстояния S-C близки между собой [1,781(2)-1,7920(19) Å], связи S-О практически выравнены [1,4464(16)-1,4590(17) Å]. В кристалле гидрата 3 [Ph3PCH2C≡CH][OSO2C9NH4(I-7)(OH-8)] ∙ 2H2O молекулы воды участвуют в образовании димерного аниона (расстояния O∙∙∙H и N∙∙∙H составляют 1,93 и 2,03 Å, при этом ареновые кольца сульфонатных лигандов почти параллельны (угол между ними равен 3,24°)). Другие молекулы воды связывают димерные анионы в цепочку водородными связями (расстояния O∙∙∙H 2,12 и 2,15 Å). Структурная организация в комплексах 1-3 в основном обусловлена слабыми межмолекулярными контактами типа O···Н 2,04-2,69 Å (1), 2,05-2,69 Å (2), 2,12-2,15 Å (3).
Ключевые слова
Взаимодействием пентафенилсурьмы и пента(пара-толил)сурьмы с b-дикетонами в бензоле (100 °С, 1 ч) получены b-дикетонаты тетраарилсурьмы Ph4Sb[MeC(O)CHC(O)Ph] (1), p-Tol4Sb[MeC(O)CEtC(O)Me] ∙ 1½PhH (2), p-Tol4Sb[MeC(O)СHC(O)NHPh] (3), охарактеризованные ИК-спектрами и рентгеноструктурным анализом. Кристаллы 1 [C34H29O2Sb, M 591,32; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 9,524(13) Å, b = 9,827(10) Å, c = 17,350(18) Å; a = 99,03(3)°, β = 101,50(6)°, g = 111,02(4)°, V = 1438(3) Å3, Z = 2; rвыч = 1,365 г/см3], 2 [C44H48O2Sb, M 730,57; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 9,740(5) Å, b = 14,283(6) Å, c = 15,174(6) Å; a = 107,818(14), β = 90,292(18), g = 105,33(2) град., V = 1929,7(16) Å3, Z = 2; rвыч = 1,257 г/см3], 3 [C34H30NO2Sb, M 606,34; сингония моноклинная, группа симметрии P21/n; параметры ячейки: a = 9,396(17) Å, b = 10,23(2) Å, c = 29,45(6) Å; β = 95,91(6)°, V = 2817(10) Å3, Z = 4; rвыч = 1,430 г/см3]. Полученные b-дикетонаты тетраарилсурьмы представляют собой кристаллические соединения с четкой температурой плавления, устойчивые к действию влаги и кислорода воздуха, хорошо растворимые в ароматических растворителях и полигалоидных растворителях. Комплекс 2 является сольватом и содержит 1½ молекулы бензола. По данным РСА, атомы сурьмы в комплексах 1-3 имеют искаженную октаэдрическую координацию, причем хелатный цикл и два арильных заместителя находятся в экваториальной плоскости, а два арильных лиганда занимают аксиальные положения.
Ключевые слова
Взаимодействием эквимолярных количеств дихлорида и динитрата трифенилвисмута с пентафенилвисмутом в бензоле синтезированы хлорид и нитрат тетрафенилвисмутония, которые в реакции с мезитиленсульфоновой кислотой образуют мезитиленсульфонат тетрафенилвисмутония с выходом до 73 %.
Ключевые слова
Взаимодействием эквимолярных количеств дихлорида трифенилфосфора с пентафенилфосфором в бензоле синтезирован хлорид тетрафенилфосфония (1), который реагирует с аренсульфоновыми кислотами с образованием аренсульфонатов тетрафенилфосфония [Ph4P][OSO2C6H3(OH-4)(COOH-3]∙H2O (2), [Ph4P][OSO2C10H5(OH-1)(NO2)2-2,4] (3) с выходом до 93 %. Подобная реакция хлорида циклогексилтрифенилфосфония с 2-сульфобензойной кислотой сопровождалась синтезом 2-карбоксибензолсульфоната циклогексилтрифенилфосфония (4) с выходом 92 %. Особенности строения комплексов 2-4 установлены методом РСА. Показано, что в катионах 2-4 атомы фосфора имеют искаженную тетраэдрическую координацию, а для аренсульфонатных анионов наблюдается обычная геометрия с тетраэдрическим атомом серы.
Ключевые слова
Реакция Кабачника - Филдса широко используется для получения α-аминофосфонатов, в том числе полимерных. Кроме того, развитие получают методы механосинтеза α-аминофосфонатов. В рамках статьи были изучены методы получения арил-замещенных полимерных α-аминофосфонатов путем взаимодействия изомерных диаминобифенилов, терефталевого альдегида и диэтилфосфоната в шаровой мельнице. В результате были получены целевые поли(α-аминофосфонаты) 4. Строение продуктов было установлено на основе данных спектров ЯМР 1Н, 31P и ИК-. В спектре ЯМР 1Н следует отметить наличие характеристичных сигналов протонов ароматических фрагментов в виде мультиплетов при 8,62; 8,07 и 7,54 м.д., сигнала протонов при sp3-гибридизованном атоме углерода в виде уширенного синглета при 3,75 м. д., а также сигнала протонов группы OСH2CH3 в виде мультиплетов при 4,14 м. д. и 1,20 м. д. В спектре 31P имело место присутствие сигнала фосфора при 22,96 м.д. В ИК-спектрах наблюдались полосы поглощения при 1161 см-1 (P=O), 1051 см-1 (P-C-O), 2957 см-1 (OCH3) и 3445 см-1 (NH амидного фрагмента). Дополнительно была исследована возможность пост-модификации поливинилхлорида (ПВХ) фрагментами α-аминофосфонатов путем реакции первого с 2-аминотиофенолом, бензойным альдегидом и диэтилфосфонатом в шаровой мельнице, а также посредством реакции с 2-аминотиофенолом, терефталевым альдегидом и диэтилфосфонатом в аналогичных условиях. В результате были получены соответствующие α-аминофосфонат-содержащие поливинилхлориды 8-9. Таким образом, была продемонстрирована принципиальная возможность механосинтеза α-аминофосфонатов, а также возможность постмодификации ПВХ фрагментами α-аминофосфонатов.
Ключевые слова
Триэтиламиний трифторацетат (CH3CH2)3NH+ -O(O)C-CF3, полученный взаимодействием трифторуксусной кислоты с триэтиламином, представляет собой бесцветную ионную жидкость, переходящие в паровую фазу при нагревании до 200-220 °С. Соединение охарактеризовано методами элементного анализа, инфракрасной спектроскопии, ядерного магнитного резонанса на ядрах 1Н и 13С, масс-спектроскопии, термогравиметрии, дифференциальной сканирующей калориметрии, рефрактометрии, электронной спектроскопии поглощения и испускания. В УФ-спектре наблюдается слабая полоса поглощения в диапазоне 260-340 нм. При возбуждении в область 320 нм соединение показывает две полосы фотолюминесценции 375 и 425 нм. Ионная жидкость хорошо растворяет координационные соединения лантаноидов: фенантролин теноилтрифторметилацетонат эрбия(III) Er(tta)3·phen, тригидрат трис(3-трифторацетамидобензоилтрифторацетонат) европия(III) и ацетилацетонат гольмия(III) Но(асас)3. Представлены спектры поглощения β-дикетонатов эрбия(III), европия(III), гольмия(III) и спектры испускания β-дикетонатов эрбия(III) и европия(III).
Ключевые слова
Выполнено теоретическое исследование податливости координационных и нековалентных связей при моделировании одноосных механических деформаций кристаллической структуры дихлорида бис (2-N,6-N-дибутилпиридин-2,6-дикарбоксамид)-никеля (II). Для этого методом Хартри - Фока с тремя полуэмпирическими поправками для описания слабых взаимодействий атомов (поправка на дисперсионные взаимодействия Гримме D3, поправка ошибки суперпозиции базисного набора по схеме противовеса для пар атомов gCP и поправка эффектов неполноты ближнего действия базисного набора SRB) при использовании квантово-химических расчетов с периодическими граничными условиями были смоделированы растягивающие деформации кристаллической структуры вдоль кристаллографических осей. Сделан вывод о высокой устойчивости геометрических характеристик координационного комплекса к нарастающим деформациям. Анализ длин связей и двугранных углов внутри металлокомплекса показал их незначительные изменения во всем диапазоне растягивающих деформаций, в частности, изменение длины связи составило 4,3 % для N…Ni…N и 5,4 % для Ni…O. С помощью анализа характеристик конформационного состояния 2-N,6-N-дибутилпиридин-2,6-дикарбоксамидного фрагмента, а именно двугранных углов и межатомных расстояний, обнаружен эффект распрямления одного из N-бутильных фрагментов при большом (7-8 Å) растяжении элементарной ячейки, что подтверждает гипотезу об их напряженном скрученном конформационном состоянии, реализующимся под влиянием кристаллического окружения. При этом зафиксировано появление полости и трещины на последних шагах растяжения (8-10 Å), что вызывается сдвигами соседних металлокомплексов друг относительно друга и влияет на позиции хлорид-анионов. Примечательно, что полости и трещины образуются безотносительно оси, вдоль которой моделируется растяжение кристалла. Это указывает на то, что кристалл должен проявлять не эластичные свойства, а скорее хрупкость.
Ключевые слова
Благодаря своей универсальности, низкой стоимости и относительной безопасности для окружающей среды поливинилхлорид относится к наиболее широко используемой группе термопластов. Ключевым методом при производстве компаундов на основе поливинилхлорида является введение добавок, улучшающих необходимые характеристики. Расширение сфер применения полимерных материалов приводит к разработке композитов повышенной термостабильности. Достижение данной цели с помощью фосфорсодержащих и галогенсодержащих добавок не всегда оправданно и возможно. Минеральные наполнители не теряют своей актуальности при производстве композитов повышенной термостабильности. Устойчивое развитие способствует необходимости принятия определенных разумных решений для обеспечения безопасности нашей планеты, одним из которых является привлечение отходов в круговорот производства. Основным фактором при использовании наполнителей является обеспечение равномерного распределения частиц, что достигается среди прочего уменьшением размера частиц наполнителя. В работе показана потенциальная возможность использования вермикулита и яичной скорлупы в качестве наполнителей для полимеров повышенной термостабильности. Составлены рецептуры ПВХ композиций с содержанием исследуемых наполнителей. Изучен синергизм действия данных добавок на термоаналитические характеристики ПВХ композиций. Определено совместное влияние на реологию компаундов с их содержанием.
Ключевые слова
Молекулярно-динамическое моделирование комплекса 70S рибосомы E. coli в каноническом А/А, Р/Р-состоянии, содержащее стоп-пептид ErmBL, позволило наблюдать формирование и дестабилизацию предреакционного состояния пептидилтрансферазного центра (ПТЦ). При отсутствии антибиотиков в рибосоме, субстраты пептидилтрансферазной реакции (ПТР), а именно аминогруппа Lys-aa-тРНК и сложный эфир Asp-Р-тРНК, оказываются стабильно сближены на протяжении 200 нс траектории так, что атомы азота и углерода, между которыми предполагается образование новой пептидной связи, удерживаются на расстоянии не более 4,5 Å. В присутствии же эритромицина в рибосомном туннеле это расстояние за то же время моделирования может увеличиваться до 6 и более Å, при этом искажается сайт связывания ССА-конца А-тРНК. Важную роль в позиционировании А-тРНК играет спираль Н38 23S рРНК: паттерны ее связывания с А-тРНК и соседней спиралью Н84, участвующей в позиционировании уже Р-тРНК, заметно отличаются. В траектории, где субстраты ПТР наиболее сближены, спирали Н38 и Н84 сцеплены стэкинг-взаимодействием между остатками U890 и G2308, а остаток А896 образует стэкинг-контакт с G19 А-тРНК. Присутствие эритромицина в рибосомном туннеле разрушает стэкинг-контакт между Н38 и Н84, а положение А-тРНК изменяется настолько, что она взаимодействует с остатком А896 Н38 другим основанием, С56. Такое искажение связывания А-тРНК приводит к разрушению предреакционной структуры ПТЦ, что объясняет действие антибиотика. Важно понимать, что положение Н38 стоит дополнительно оптимизировать для получения предреакционных структур рибосом из-за недостатка структурных данных относительно этой спирали.
Ключевые слова
Разработка и совершенствование материалов для накопления электрической энергии является важной для развития технологии возобновляемых источников энергии. Одними из наиболее подходящих устройств для накопления электрической энергии являются суперконденсаторы, так как они способны выдерживать высокие токи заряда и разряда, имеют большое количество циклов перезарядки. Характеристики двойнослойных суперконденсаторов (ДСК) во многом зависят от материалов электрода, в котором формируется двойной электрический слой. Наиболее перспективными материалами для производства ДСК являются материалы на основе углерода, такие как активированные угли, сажи, фуллерены, нанотрубки, графен. Улучшить характеристики существующих материалов возможно за счет увеличения их электропроводности, смачиваемости электролитом, увеличения удельной площади поверхности. Допирование углеродных материалов атомами азота позволяет во многом решить эти задачи, в том числе снизить их электрическое сопротивление. Одним из способов получения богатых азотом углеродных материалов является медленный термолиз смеси каменноугольного пека и меламина. Такой способ позволяет получить однофазные углеродные материалы с массовой долей пека до 22 масс. %. Методами электронной микроскопии показано, что с увеличением концентрации азота происходит разрыхление материалов. Методом рентгенофазового анализа показано, что полученные материалы имеют слоистую структуру, подобную графиту. Методом РФЭС установлено, что атомы азота встраиваются в структуру графитового листа. В полученных материалах преобладают атомы азота в пиридиновой конфигурации. Электрохимические свойства полученных материалов были исследованы при помощи электрохимической ячейки, которая является прототипом ДСК. Наибольшей ёмкостью обладает материал с концентрацией азота 4,2 масс. %. Характеристики полученного ДСК сравнили с промышленно выпускаемым конденсатором емкостью 220 мФ и показали их большое сходство.
Ключевые слова
Методами докинга, взвешенной и равновесной молекулярной динамики была получена структура комплекса 70S A/A,P/P-рибосомы E. coli , связавшей антибиотик хлорамфеникол в неканоническом сайте недалеко от пептидилтрансферазного центра в присутствие известного стоп-пептида к нему - ClmAL. В ней хлорамфеникол удерживается в рибосоме за счет вклинивания своего нитрофенильного остатка в полость между остатками Ψ2504 и U2506 23S рРНК и образования гидрофобных контактов с ними, а также водородных связей с остатками G2505 и G2061 23S рРНК. Лидерный пептид ClmAL при этом образует множество стабильных водородных связей с остатками G2061, m2A2503, U2609 и C2610 23S рРНК в рибосомном туннеле. Молекулярно-динамическое моделирование этого тройного комплекса показало, что механизм действия антибиотика заключается в индуцировании расхождения субстратов пептидилтрансферазной реакции друг относительно друга на расстояние, исключающее реакцию транспептидации. Это расхождение субстратов пептидилтрансферазной реакции стабилизировалось взаимодействиями между аминогруппой боковой цепи остатка лизина в А-сайте с одной стороны и основанием C2063 и хлорамфениколом - с другой. При этом α-аминогруппа остатка лизина образует водородную связь с карбонильной группой остатка Ala-7 CmlAL. Это, совместно со специфическими взаимодействиями остатков пептида CmlAL с остатками рРНК рибосомного туннеля, объясняет останов трансляции в присутствие хлорамфеникола именно на данной последовательности и, как следствие, присутствие данной последовательности в генах, кодирующих белок-транспортер CmlA, отвечающий за резистентность рибосом к данному антибиотику.
Ключевые слова
Описана кристаллическая структура металл-органического каркаса - нитрата 4,4’-дипиридил меди(II) с молекулой ДМСО в координационной сфере меди, детали строения установлены методом РСА. Кристаллографические данные: брутто-формула C55H93Cu2N12O23S7, М 1641,91; моноклинная сингония, пространственная группа P 1 21/n 1; параметры ячейки: a = 15,490(3), b = 14,760(3), c = 15,980(3); a = 90, β = 90,10(3), g = 90 град; V = 3653,5(13) Å3, Z = 2, ρрасч = 1,493 г/см3. Бидентатным лигандом в исследуемом МОК является 4,4’-бипиридил; медь образует координационный полиэдр - октаэдр, в четырех экваториальных положениях которого находятся атомы азота бипиридиновых фрагментов, а в двух аксиальных положениях - атомы кислорода в нитрат-иона и диметилсульфоксида. Длины связей Cu-N в экваториальном положении лежат в диапазоне 2,014-2,031 Å, а длины связи Cu-O составляют 2,297 Å и 2,515 Å. Занятость экваториальных положений 4,4’-дипиридилом приводит к образованию сетчатой слоистой 2D-структуры. Отдельные слои в полученном нитрате 4,4’-дипиридил меди(II) не связаны между собой и сдвинуты относительно друг друга. Ароматические кольца 4,4’-дипиридила повернуты на угол 5,77(2) град. относительно друг друга.
Ключевые слова
В статье рассматриваются основные способы получения углеродных композитных наноматериалов и выделяется метод термолиза как один из основных методов. Для понимания сущности процессов термического разложения как метода синтеза углеродных наноматериалов был рассмотрен термолиз ароматических карбоксилатов марганца (II), кобальта (II), никеля (II) и меди (II). В статье подробно рассматривается методика синтеза этих карбоксилатов металлов в простых условиях. Процесс термического разложения производился в двух средах (воздушная как окислительная и аргоновая как нейтральная) для сравнения получаемых продуктов. Для подробного изучения процессов разложения карбоксилатов марганца (II), кобальта (II), никеля (II) и меди (II) использовались методы термического анализа (ТГ и ДСК) на синхронном термоанализаторе Netzsch 449 Jupiter. Для изучения морфологии и состава продуктов применялись методы рентгенофазового анализа, оптической и сканирующей электронной микроскопии и рентгенофлуоресцентного микроанализа. Использовались приборы: рентгеновский дифрактометр Rigaku Ultima IV и сканирующий электронный микроскоп с приставкой элементного микроанализа Jeol JSM-7001F. Также были предложены механизмы процессов, протекающих при термическом разложении ароматических карбоксилатов марганца (II), кобальта (II), никеля (II) и меди (II). Для более точного определения состава продуктов синтеза карбоксилатов марганца (II), кобальта (II), никеля (II) и меди (II) и более точного описания процессов термического разложения этих солей также были подвергнуты термическому разложению и соответствующие ароматические карбоновые кислоты. В приложении к статье представлены термограммы ароматических карбоксилатов марганца (II), кобальта (II), никеля (II) и меди (II).