
Вестник Южно-Уральского государственного университета. Серия: Химия
2023. — Выпуск 3
Содержание:
На основе анализа литературы, опубликованной преимущественно с 2020 по 2023 г., систематизированы и описаны методы получения, некоторые реакции, особенности строения органических соединений платины, содержащих две и более связи платина-углерод, и примеры их возможного использования. При обсуждении методов синтеза основное внимание уделено наиболее эффективным подходам их получения. Рассмотрены реакции образования органических соединений платины и приведены сведения об их биологической и каталитической активности.
Ключевые слова
При взаимодействии пентафенил- и пента( пара -толил)сурьмы с ферроцендикарбоновой кислотой (мольные соотношения 1:1 и 2:1) в толуоле (20°С 24 ч) имеет место замещение водорода в одной или двух карбоксилатных группах и образование ферроценкарбоксилатов тетраарилсурьмы HOOCС5H4FeС5H4C(O)OSbPh4 (1), HOOCС5H4FeС5H4C(O)OSbTol4 (2), Ph4SbC(O)OС5H4FeС5H4C(O)OSbPh4 (3) и p -Tol4SbC(O)OС5H4FeС5H4C(O)OSbTol4 (4) с выходом до 83 %. Соединения 1-4 идентифицированы элементным анализом, методом ИК-спектроскопии и рентгеноструктурным анализом для 4. РСА комплекса 4 проводили на автоматическом четырехкружном дифрактометре D8 Quest Bruker (Мо К α -излучение, λ = 0,71073 Å, графитовый монохроматор) при 293 К. Кристаллографические характеристики 4: моноклинная сингония, пространственная группа P21/ c , a = 17,227(17), b = 11,064(9), c = 30,59(3) Å, β = 100,00(4) град., V = 5742(9) Å3, Z = 4, rвыч = 1,440 г/см3, 2q 6,02-49,08 град., всего отражений 124343, независимых отражений 9436, число уточняемых параметров 684, R int = 0,1051, GOOF 1,094, R 1 = 0,0536, wR 2 = 0,1309, остаточная электронная плотность (max/min), 0,88/-1,21 e/Å3. По данным рентгеноструктурного анализа в кристалле 4 координация атомов сурьмы - искаженная октаэдрическая вследствие того, что карбоксилатный лиганд является бидентатным хелатирующим. Диагональные углы в двух октаэдрах составляют 146,4(2), 154,0(3), 171,0(2)° и 147,4(2), 154,8(2), 166,9(2)°. Расстояния Sb-О равны 2,296(5), 2,502(5) Å и 2,289(5), 2,453(5) Å, связи Sb-С существенно различаются (2,146(7)-2,166(7) и 2,123(6)-2,165(7) Å). Структурная организация кристалла обусловлена в основном взаимодействиями С-Н···p-типа.
Ключевые слова
Взаимодействием трис (4-трифторметилфенил)сурьмы (1) с дихлоридом и дибромидом меди в ацетоне получены дихлорид (2) и дибромид (3) трис (4-трифторметилфенил)сурьмы (2) с выходами 85 и 92 % соответственно. Окисление 1 трет -бутилгидропероксидом в присутствии 2,5-дифторбензойной кислоты (мольное соотношение 1:1:2) в эфире сопровождается образованием бис (2,5-дифторбензоата) трис (4-трифторметилфенил)сурьмы (4) с выходом 81 %. Соединения 1-4 идентифицированы методами ИК-спектроскопии и рентгеноструктурного анализа. По данным РСА, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD - детектор, Мо К α-излучение, λ = 0,71073 Å, графитовый монохроматор), кристаллов 1 [C21H12F9Sb, M 557,06; пространственная группа Р- 1, а = 10,858(13), b = 11,072(13), c = 11,432(18) Å, α = 104,91(7)°, β = 113,61(5)°, γ = 106,89(5)°, V = 1090(3) Å3, размеры кристалла 0,34 ´ 0,33 ´ 0,3 мм, интервалы индексов отражений -14 £ h £ 14, -15 £ k £ 15, -15 £ l £ 15, всего отражений 40268, независимых отражений 5862, Rint 0,0477, GOOF 1,049, R 1 = 0,0533, wR 2 = 0,1427, остаточная электронная плотность 1,16/-1,04 e/Å3], 2 [C21H12F9Cl2Sb, M 627,98; пространственная группа Р- 1, а = 7,920(4), b = 14,732(7), c = 21,759(13) Å, α = 75,31(2)°, β = 86,12(3)°, γ = 76,10(2)°, V = 2384(2) Å3, размеры кристалла 0,65 ´ 0,15 ´ 0,11 мм, интервалы индексов отражений -11 £ h £ 11, -21 £ k £ 22, -32 £ l £ 32, всего отражений 138621, независимых отражений 12076, Rint 0,0553, GOOF 1,109, R 1 = 0,0429, wR 2 = 0,0960, остаточная электронная плотность 1,28/-1,06 e/Å3], 3 [C27H18Br2F9Sb, M 794,98; пространственная группа Р- 1, а = 9,129(8), b = 12,120(8), c = 14,454(14) Å, α = 76,41(3)°, β = 85,93(5)°, γ = 68,69(3)°, V = 1448(2) Å3, размеры кристалла 0,49 ´ 0,49 ´ 0,31 мм, интервалы индексов отражений -12 £ h £ 12, -16 £ k £ 16, -19 £ l £ 19, всего отражений 64492, независимых отражений 7337, Rint 0,0545, GOOF 1,014, R 1 = 0,0366, wR 2 = 0,0817, остаточная электронная плотность 0,68/-0,61 e/Å3] и 4 [C35H18F13O4Sb, M 871,27; пространственная группа Р -1, а = 11,575(14), b = 12,017(17), c = 15,041(16) Å, α = 76,33(5)°, β = 69,62(5)°, γ = 64,04(6)°, V = 1755(4) Å3, размеры кристалла 0,31 ´ 0,12 ´ 0,11 мм, интервалы индексов отражений -15 £ h £ 14, -15 £ k £ 15, -19 £ l £ 19, всего отражений 44416, независимых отражений 8033, Rint 0,0393, GOOF 1,072, R 1 = 0,0326, wR 2 = 0,0798, остаточная электронная плотность 1,03/-0,57 e/Å3] атомы сурьмы в 1 имеют координацию тригональной пирамиды, в 2-4 - тригональной бипирамиды с электроотрицательными лигандами в аксиальных положениях. Длины связей Sb-C в 1 равны 2,155(5), 2,164(6) и 2,170(5) Å, валентные углы CSbC составляют 95,04(18), 95,70(17) и 97,20(18)°, что меньше значения тетраэдрического угла и объясняется наличием неподеленной электронной пары на атоме сурьмы. Значения длин связей С-F изменяются в интервале 1,143(12)-1,334(11) Å. Кристаллы 2 состоят из двух типов кристаллографически независимых молекул, геометрические параметры которых незначительно отличаются между собой. Соединение 3 представляет собой сольват (4-CF3C6H4)3SbBr2 ∙ PhH. В кристалле 4 атомы сурьмы координированы атомами кислорода бидентатных карбоксилатных лигандов (расстояния Sb-O и Sb∙∙∙O=C составляют 2,120(3), 2,144(3) и 2,829(5), 2,911(6) Å соответственно).
Ключевые слова
Выполнено сравнительное изучение эффективности действия различных форм бора (водный раствор/хелатная форма) на урожайность и качественные показатели зеленой массы клевера лугового сорта «Мартум». Хелатные формы представляли собой растворы борной кислоты в органических жидкостях: моноэтаноламине, диэтаноламине, триэтаноламине, глицерине, этиленгликоле. Установлено, что растения, удобренные растворами борной кислоты в органических растворителях, были более мощными и нарастание биомассы шло более интенсивно. Использование водного раствора борной кислоты (традиционная форма борных микроудобрений) повышало рост растений лишь на 6,2% по сравнению с вариантом без внесения удобрений. Применение органических растворителей привело к более значимому увеличению высоты клевера лугового: прибавки к контролю варьировали от 5,5 до 19,6 см. Наиболее высокие растения наблюдались на варианте с применением борной кислоты, растворенной в этиленгликоле, что превысило значение контроля в 1,3 раза. Некорневая подкормка борными микроудобрениями позволила увеличить зеленую массу опытной культуры на 7,4-78,5 % относительно контроля. Использование в качестве растворителей триэтаноламина, глицерина и этиленгликоля способствовало максимальному достоверному росту вегетативной массы клевера, которая была соответственно на 8,1; 7,7 и 9,5 т/га выше, чем на неудобренном варианте. Сбор сухого вещества в опытных вариантах увеличился на 0,1-1,1 т/га. Наибольшее значение данного показателя было отмечено при некорневой обработке клевера раствором борной кислоты на основе этиленгликоля, что превысило значение контрольного варианта на 73,3 и на 62,5 % варианта с водным раствором борной кислоты. Кроме учета общего содержания органических или минеральных соединений в фитомассе клевера, было определено содержание основных элементов питания - азота, фосфора и калия. Наибольшая концентрация азота наблюдается при внесении смеси борной кислоты и глицерина, что на 24,2 % превышает значение контрольного варианта и на 33,1 % варианта с водным раствором борной кислоты. Содержание фосфора в зеленой массе клевера в варианте с использованием раствора борной кислоты в глицерине было максимальным и превысило контроль на 15,4 %. Растворение борной кислоты в воде и этиленгликоле, напротив, достоверно снизило концентрацию этого элемента на 11,5 % относительно контрольного варианта. Содержание калия в зеленной массе клевера на контрольном варианте составляло 1,95 %, в то время как использование растворов борной кислоты в органических растворителях для некорневой подкормки привело к увеличению показателя в среднем в 1,04 раза. При этом максимальная прибавка по рассматриваемому показателю в варианте, где применялся раствор на основе диэтаноламина, - 7,7 % к соответствующему значению неудобренного варианта и 8,2 % - к варианту с использованием водного раствора борной кислоты. Применение борной кислоты способствовало незначительному снижению содержания нитратов, причем наибольшим эффектом в данном случае характеризовались варианты с использованием ди- и триэтаноламина.
Ключевые слова
Однореакторное взаимодействие цианотиоацетамида, N-(2,4-дихлорфенил)ацетоацетамида и фурфурола в присутствии избытка N-метилморфолина в этаноле при 25 °С приводит к образованию 6-метил-4-(2-фурил)-5-[(2,4-дихлорфенил)карбамоил]-3-циано-1,4-дигидропири-дин-2-тиолата N-метилморфолиния с выходом 82 %. Последующее алкилирование полученного тиолата N-замещенными α-хлорацетамидами протекает региоспецифично по атому серы и приводит к образованию 2-метил-6-[(2-оксо-2-{[замещенный арил]амино}этил)сульфанил]-4-(2-фурил)-N-(2,4-дихлорфенил)-5-циано-1,4-дигидропиридин-3-карбоксамидов 10-17. Соединения 10-17 идентифицированы методами ИК- и ЯМР-спектроскопии, а также элементного анализа. Синтезированные соединения 10-17 были исследованы на наличие антиэкссудативной и противовоспалительной активности. Белые лабораторные крысы в количестве 112 особей были поделены на контрольную («острый формалиновый отек лапы») и интактную группы, 4 группы сравнения (ацетилсалициловая кислота, индометацин, нимесулид и парацетамол) и 8 опытных групп, по количеству исследуемых производных 1,4-дигидропиридина. Эффективность противовоспалительной активности образцов оценивалась на модели «острого формалинового отека лапы» крыс, которую смоделировали введением в апоневроз правой задней конечности 0,1 мл 2%-ного раствора формалина. Исследуемые вещества вводили внутригастрально в дозе 5 мг/кг за 1,5 часа до индукции воспалительного процесса. Онкометрические изменения оценивались количественно по обхвату конечностей. Показано, что максимально выраженной противовоспалительной активностью обладают: 2-метил-6-[(2-оксо-2-{[3-(трифторметил)-фенил]амино}этил)сульфанил]-4-(2-фурил)-N-(2,4-дихлорфенил)-5-циано-1,4-дигидропиридин-3 -карбоксамид 12 (эффективнее препаратов сравнения в 1,09-1,81 раза); 6-[(2-анилино-2-оксоэтил)сульфанил]-2-метил-4-(2-фурил)-N-(2,4-дихлорфенил)-5-циано-1,4-дигидропиридин-3-карбоксамид 16, уменьшающий отек индуцированной лапы на 42,91 % в сравнении с контролем; 2-метил-6-({2-[(3-метилфенил)амино]-2-оксоэтил}сульфанил)-4-(2-фурил)-N-(2,4-дихлорфенил)-5-циано-1,4-дигидропиридин-3-карбоксамид 14 (обнаруживает противовоспалительную активность на 18-часовом интервале эксперимента в 1,65-2,85 раз выше, чем у препаратов сравнения). Наиболее активным оказался 2-метил-6-({2-[(3,5-диметилфенил)амино]-2-оксоэтил}сульфанил)-4-(2-фурил)-N-(2,4-дихлорфенил)-5-циано-1,4-дигидропиридин-3-карбоксамид 11, уменьшающий отек лапы в 2,9 раза эффективнее нимесулида.
Ключевые слова
Производные 1-метилимидазол-2-тиола (1) с заместителями различного рода являются перспективными лигандами для моделирования различных ферментативных систем и структур, обладающих фармакологической активностью. Они широко используются в качестве промежуточных продуктов в синтезе органических соединений, обладающих биологической активностью (противоопухолевой, противомикробной, антидиабетической, антитиреоидной, антигистаминной, антипротозойной и противовирусной), а также как агрохимикаты, красители, фотохимические вещества, ингибиторы коррозии, эпоксидные отвердители, клеи и пластические модификаторы. В настоящей работе нами впервые исследовано взаимодействие 1-метилимидазол-2-тиола 1 с пренилбромидом (2a), транс -циннамилхлоридом (2b) и бутенилбромидом в различных условиях. Установлено, что селективность реакций алкилирования соединения 1 зависит от условий проведения реакций (алкилирующий агент, растворитель, основание). Синтез индивидуальных 1-метил-2-пренил-сульфанилимидазола (3a) (с выходом 78-86 %), 1-метил-2-циннамилсульфанилимидазола (3b) (с выходом 94-97 %) и 2-(3-бутенил)сульфанил-1-метилимидазола (4) (с выходом 33-75 %) был осуществлен нами алкилированием 1-метилимидазол-2-тиола 1 пренилбромидом 2a, транс -циннамилхлоридом 2b и бутенилбромидом соответственно в следующих системах: i -PrOH- i -PrONa, K2CO3-Me2CO (для 3а), MeOH-MeONa, i -PrOH- i -PrONa, K2CO3-Me2CO, K2CO3-MeCN и i -PrOH- i -PrOК (для 3b), MeOH-MeONa, i -PrOH- i -PrONa, K2CO3-Me2CO, K2CO3-MeCN, i -PrOH- i -PrOК и КОН-H2O-ТЭБАХ (для 4). Строение синтезированных соединений 3a,b и 4 исследовано и доказано методами масс-спектрометрии (ГХ-МС) и спектроскопии ЯМР ¹Н и ¹³С. Выявлены общие закономерные направления фрагментации молекулярных ионов S-производных 3a,b и 4, сопровождающиеся отщеплением метильного/фенильного и тиольного радикалов. Доказательством протекания реакций алкилирования по атому серы является наличие в спектрах ЯМР 1Н соединений 3a,b и 4 сигналов протонов группы -SCH2- в области δ 3,12-3,84 м. д. По данным ЯМР 1Н найдено, что использование иных условий при алкилировании 1-метилмимидазол-2-тиола 1 вследствие его тион-тиольной таутомерии приводит к образованию побочных продуктов в минорном количестве - N-алкенильных и S,N-диалкенильных производных.
Ключевые слова
В современном мире в условиях быстрого развития промышленности усиливается загрязнение окружающей среды тяжёлыми металлами в масштабах, не свойственных природе. При поступлении в почву в больших количествах тяжёлые металлы оказывают влияние на биологические и биохимические свойства почв, на изменение в них количества подвижных форм питательных веществ. В загрязненных почвах поглощение тяжелых металлов растениями приводит к накоплению металлов в съедобных частях овощей или сельскохозяйственных культур. Общую загрязнённость почвы характеризует валовое содержание тяжёлых металлов, а доступность элементов для растений определяется их подвижными формами. Согласно проведённому расчёту геоаккумуляционного индекса для исследуемых элементов был составлен следующий ряд металлов по вкладу в загрязнение почв: Cu > Zn > Fe > Mn. Количественной мерой интенсивности накопления химических элементов растениями из почвы является коэффициент накопления, отражающий степень биофильности элементов, а также интенсивность их вовлечения в биологический круговорот. Аккумуляционные способности корней и побегов по отношению к цинку на разных стадиях роста пшеницы уменьшаются в следующем порядке: колошение > созревание > трубкование. Однако для меди наблюдается постепенное снижение аккумуляции в корнях на разных стадиях роста пшеницы в следующем порядке: колошение > трубкование > созревание; в побегах - созревание > трубкование > колошение. По результатам исследования были составлены ряды металлов по способности аккумуляции озимой пшеницей. Рассчитанное значение коэффициента перехода позволяет сформулировать следующие выводы: железо достигает максимального значения коэффициента на стадии трубкования (7,764) и имеет наибольшее значение среди всех элементов и стадий роста; цинк и марганец достигают максимального значения коэффициента на стадии колошения (1,765 и 2,193 соответственно); медь - на стадии созревания (1,143).