There is increasing evidence that climate change is a growing social and economic burden. Moreover, the 17 Sustainable Development Goals (SDGs) are at risk of falling short of their intended targets. The difficulties will only be made worse as the climate and economic burdens grow. A growing literature suggests that the problems largely stem from the non-productive use of resources which erode our social and economic well-being-especially over the long haul. These huge inefficiencies include the non-productive use of capital, materials, water, food, and especially energy. One assessment notes that, depending on how we ignore global ecosystems or, more hopefully, how we might build up a more healthy and resilient environmental capacity, “the global value of ecosystem services can decline by $51 trillion/yr or increase by $30 trillion/yr” by the year 2040 (with values in 2007 dollars). At the same time, moving to a smarter and more productive use of all resources requires a larger number of institutional changes. Such changes range from the use of new metrics to assess future opportunities to an array of policies and perspectives that promote these changes. In this special issue we review a number of different ways that institutional changes might create opportunities in which all resources might be managed more productively. While no single special issue can cover all elements of the necessary institutional changes, nor can even a series of books on the topic, this is another step forward to open up thinking more along the lines of human and cultural dimensions toward a better understanding of how resources might be more productively used for social and economic benefits.
Экономическая политика
2020. — Выпуск 2
Содержание:
В последние двадцать лет, когда цены на энергоресурсы росли или оставались относительно высокими, в России реализовывалась модель экстенсивного сырьевого роста, основанная на эксплуатации природных богатств, преимущественно отдельных регионов. Было ли при этом развитие всех регионов устойчивым? В статье предложен подход к сравнительной оценке экологической эффективности региональных экономик, которая определяется как отношение выпуска несырьевых товаров и услуг к затратам ресурсов (труда, капитала, сырья) и экологическим издержкам. Одновременно это способ оценки относительной производительности с учетом принципов устойчивого развития, а соответственно, индикатор качества экономического роста. Модель устойчивого развития предполагает сочетание роста подушевого ВРП и экологической эффективности. Экологическая эффективность среднего российского региона росла с 2003 года (за исключением кризисных периодов) вслед за увеличением доли сектора услуг и закрытием неэффективных «грязных» производств. По результатам эконометрических расчетов, экологическая эффективность росла быстрее в плотно заселенных регионах с высокой долей наукоемких сервисов, инвестиционной привлекательностью и интенсивным обновлением технологий (в Москве, Санкт-Петербурге, Свердловской, Томской, Белгородской, Калининградской областях и др.), а также в ряде аграрных центров. При этом снижалась экологическая эффективность в большинстве северных и сибирских регионов, специализирующихся на отраслях первичного передела. Сохраняется большой потенциал повышения экологической эффективности. Однако для большинства регионов рост сопровождался качественной трансформацией экономик, а более половины двадцатилетнего периода прошло в условиях, соответствующих модели устойчивого развития. Во многом описанные успехи обусловлены системой межбюджетных трансфертов, обеспечивающей распределение части нефтяной ренты среди регионов. Дальнейшему росту экологической эффективности может содействовать увеличение инвестиций в несырьевой сектор, повышение энергоэффективности и снижение уровня автомобилизации. Соответствующие изменения могут быть ускорены в условиях начинающегося кризиса, вызванного пандемией и падением цен на нефть.
Ключевые слова
Policies, especially in the European Union, encourage government and privately funded programs to engage in “energy efficiency first” strategies. Those policies lead to the moderation of energy demand and are long-term solutions that not only protect households from price fluctuations and energy poverty, but also allow people to reduce their environmental footprint and save money in the long term. Energy poverty usually occurs when a household is unable to secure a level and quality of domestic energy services-space cooling and heating, cooking, appliances, information technology etc.-sufficient for its social and material needs. In the Global North, energy poverty is generally attributed to internal and external factors such as low incomes, energy-inefficient homes and high energy prices, while in the Global South, the infrastructural lack of access to more technologically advanced energy carriers is the main culprit. Energy poverty in developing countries is gaining interest thanks to the seventh Sustainable Development Goal: Affordable and clean energy. Still, so far, in the European Union and in the rest of the world, little has been done to sew together the two concepts and include the most vulnerable part of the population in an approach that reconciles environmental and climate risks with social issues. In practice, energy poverty and efficiency agendas are rarely coordinated. Energy efficiency and a better pooling of the resources (known also as “sufficiency”) could lead to higher resiliency to the social and climate crisis.
Ключевые слова
Top-down approaches to reducing global carbon dioxide emissions have so far met with limited success, even though most countries accept the urgency of mitigating climate change and have entered into various agreements that should help reduce emissions. This article does not dismiss the importance of such “top-down” agreements for developing rational strategies to achieve declining total emissions, but it suggests a complementary approach to encourage immediate “bottom-up” progress on climate goals that do not need to wait for global cooperation. This paper develops a framework to identify free-riding behavior among countries that use three readily measured parameters of the country’s economy: carbon intensity, rate of change of the carbon intensity, and per capita GDP. It then goes on to propose a simple formula to calculate trade sanctions against a free-riding country that could be used in bilateral actions to incentivize carbon emissions reductions. The paper argues that the value of the goods, the difference in carbon intensity between the importer and exporter, and the cost of carbon removal can be used to calculate the unfair trade advantage of a free-riding country. The dynamics of the proposed framework are tested through three case studies, highlighting current free-rider behavior-based on historic emissions for the period 1991-2012; an alternate, hypothetical scenario whereby a subset of countries follow aggressive carbon emission reductions; and a 450 ppm stabilization scenario
Ключевые слова
With the new Paris climate agreement, 185 of 197 nations have committed to lower emissions of planet-warming greenhouse gases. The intent is to limit global temperature growth within 2 degrees Celsius (°C), with a hopeful target of 1.5°C. At the same time, a special report from the International Panel on Climate Change (IPCC) indicates that large emission reductions, in fact, must be achieved by 2030 if the temperature increase is to remain below 1.5°C. This goal requires every country to radically cut their greenhouse gas emissions by rebuilding both their energy supply and end-use sectors. Even bigger challenges confront those countries which export fossil fuel resources, as they must also find new sources of economic activity to replace revenues that will be lost from the significantly reduced energy sales. The overall economic impact of this transformation is hard to quantify. On the one hand, decarbonization requires an initial set of large-scale policy, program, and research and development expenditures. It will also entail higher upfront investments in energy efficiency and alternative energy resources. Based on conventional wisdom, these outlays will create an initial burden on the economy. On the other hand, the additional infrastructure investments will also stimulate economic activity, reduce future energy expenditures and also provide an array of other non-energy benefits. In this paper, we propose a thought experiment that explores the idea of prospective positive net economic impacts of decarbonization strategies for an energy-producing nation. Our results suggest that the positive productivity benefits of decarbonization strategies can overcome negative costs in both the short and long terms. We also note additional effects that are consistent with the officially announced long-term goals of modernization and reducing the Russian economy’s dependence on revenues from energy and raw material exports
Ключевые слова
В работе рассмотрены успехи и механизмы поддержки развития возобновляемых источников энергии (ВИЭ) в ведущих странах, выделены первичные экономико-социальные национальные цели этого процесса. Показано, что развитие ВИЭ успешно соседствует с долгосрочными целями стран по выбросам СО2 в энергетике и вносит значительный вклад в их достижение. На основе анализа действий России делается вывод, что наша страна прилагает немалые усилия по следованию глобальному тренду, но отстает от ведущих стран по объемам финансовой поддержки и масштабам производства ВИЭ. Выделены недостатки существующей системы поддержки ВИЭ, рассчитанной на период до 2024 года. Предложены направления развития системы после 2024 года, призванные обеспечить конкурентоспособность российского оборудования на внутреннем и затем на мировом рынках. Система должна ориентироваться на эффективность генерации, включать поддержку экспортных сделок, отдавать предпочтение большим объемам производства, что снижает цены и облегчает локализацию (рост доли оборудования, произведенного в России). Оценены долгосрочные перспективы развития солнечной и ветровой генерации в России на период до 2040-2045 годов. С помощью модели РУТАЙМС рассмотрены два варианта государственной поддержки: введение фиксированной надбавки к рыночной цене генерации (feed-in premium) и субсидирование инвестиционных издержек. Проведенные расчеты показывают, что надбавка на 1,0 руб./кВт*ч на период 2025-2030 годов позволит за пять-десять лет поднять общую установленную мощность ветровых и солнечных станций до 40 ГВт. Их доля в электрогенерации может быть доведена до 20%, а к 2040-2045 годам - до 35%. Тот же результат может быть достигнут субсидированием инвестиций на уровне около 300 долл./кВт (с учетом издержек государства менее 15 млрд долл., покрывающих 20-25% капитальных затрат). Каждый из видов поддержки снижает суммарную эмиссию СО2 от всех видов сжигания ископаемого топлива на 100-150 МтСО2/год.
Ключевые слова
For many decades, Uzbekistan has been one of the largest cotton producers in the world. The irrigation water needed for these high production levels has been delivered by the massive diversion of the Amu Darya and Syr Darya rivers, which naturally flowed into the Aral Sea. This diversion for agriculture was the main cause of the rapid decline of the Aral Sea, which is at only 10% of its original size today. The traditional method of irrigation, which relies on simple open canal systems, is highly inefficient for managing the region’s critical and limited water resource. It has been qualitatively estimated, for example, that irrigation water lost to evaporation and system inefficiencies is quite large. With the future availability of water at risk for agriculture in Central Asia, primarily due to the loss of glacial volume from global warming, along with declines in seasonal snowpack, it is clear that new approaches to water management are needed. Any serious efforts to restore the Aral Sea and its ecological services would also reduce supplies of irrigation water for Uzbekistan. While regional conflict over water is unlikely, it must be considered since Uzbekistan is a downstream country among several that rely on the Amu Darya and Syr Darya rivers for most of their water supplies. To insure against these risks to cotton production and the underlying economy, better irrigation technologies are needed across Uzbekistan. However, these technologies can be quite expensive, especially given that water is still nearly free. In this case study we explore the use of real options analysis (ROA) to look for optimal investment strategies in efficient irrigation technologies in light of variable climate and policy uncertainties.
Ключевые слова
In 2018 businesses, households and government enterprises throughout the global economy spent an estimated €7.4 trillion to meet the many demands for various energy services. Current projections suggest that the present scale of annual expenditures may increase by more than 60 percent to €12.0 trillion by 2050 (with all costs expressed in real 2018 values). Although the global economy derives important benefits from the purchase of many energy services, the inefficient use of energy also creates an array of costs and constraints that burden our social and economic well-being. Among these costs or constraints are increased health costs, air pollution, climate change and a less productive economy-especially over the long term. Yet there is good news within the countless energy markets throughout the global economy. Whether improved lighting in homes and schools, transporting people and goods more efficiently, or powering the many industrial processes within any given nation, there are huge opportunities to improve the productive use of energy in ways that reduce total economic costs. And those same energy efficiency upgrades can also reduce greenhouse gas emissions that drive climate change, as well as lessen other impacts on both people and the global environment. However, as this manuscript suggests, it will take an adequately funded set of smart policies and effective programs, including a skilled work force, to drive the optimal scale of energy efficiency investments.