Год ( По возрастанию | По убыванию )
Математика
Изучение изменения распределения молекул по скоростям в процессе релаксации. Методические указания для выполнения лабораторной работы
Компьютерная лабораторная работа посвящена изучению процесса установления равновесного максвелловского распределения молекул по скоростям, которое наблюдается в модельной системе твёрдых шаров или дисков в процессе их движения и упругого соударения друг с другом. Студенты должны построить график зависимости «скоростной» части энтропии от времени, гистограмму установившегося...
Изучение броуновского движения и определение постоянной больцмана по пробегу броуновской частицы. Методические указания для выполнения лабораторной работы
В данной лабораторной работе моделируется движение броуновской частицы на экране компьютера. Студенты должны убедиться в справедливости формулы Эйнштейна – Смолуховского и определить постоянную Больцмана по пробегу броуновской частицы. Методические указания рассчитаны на студентов физических, химических и технических специальностей.
Задачи олимпиады по математике 2012 года
В данной работе представлены задачи с решениями олимпиад по математике, которые прошли в Томском государственном университете в 2013 году. Ряд задач являются авторскими. Многие задачи взяты из сборника избранных задач из журнала «American mathematical monthly» под редакцией В.М. Алексеева, а также из сборника «Избранные олимпиадные задачи» Н.Б. Васильева, А.П. Савина...
Теория случайных процессов. Часть 2. Марковские процессы
Методические пособие предназначено для оказания помощи студентам при выполнении практических заданий курса «Теория случайных процессов». Предложены в большом количестве разнообразные задачи с разобранными решениями, а также задачи для самостоятельной работы по каждой теме. Приведены необходимые сведения из теории случайных процессов. Методическое пособие составлено...
Теория случайных процессов. Часть 1
Методические пособие предназначено для оказания помощи студентам при выполнении практических заданий курса «Теория случайных процессов». Предложены в большом количестве разнообразные задачи с разобранными решениями, а также задачи для самостоятельной работы по каждой теме. Приведены необходимые сведения из теории случайных процессов. Методическое пособие составлено...
Молодежная научная конференция «Все грани математики и механики» (24–30 апреля 2015 г.)
В сборнике представлены статьи, посвященные актуальным проблемам математики и механики, а также современным подходам и методам решения фундаментальных и прикладных задач. Для студентов, аспирантов, молодых ученых.
Задачи олимпиады 2014 года
В данной работе представлены задачи с решениями олимпиад по математике, которые прошли в Томском государственном университете в 2013 году. Ряд задач являются авторскими. Многие задачи взяты из сборника избранных задач из журнала “American mathematical monthly” под редакцией В. М. Алексеева, а также из сборника “Избранные олимпиадные задачи” Н. Б. Васильева, А. П Савина...
Математическая статистика для психологов. Часть 1
Методическое пособие содержит элементарное изложение разделов курса «Математическая статистика для психологов». Предложены разнообразные примеры и задачи с разобранными решениями, а также задачи для самостоятельной работы студентов по каждой из тем. Учебно-методическое пособие предназначено для студентов 1-го курса специальностей «Клиническая психология», «Психология»...
Теория вероятностей. Часть 2
Методическое пособие содержит теоретический материал по главе «Случайные величины» курса «Теория вероятностей». Предложены разнообразные задачи с разобранными решениями, а также задачи для самостоятельной работы студентов по каждой из тем. Для студентов 1-го курса специальностей «Управление персоналом» и «Организация работы с молодежью» факультета психологии, изучающих...
Всероссийская молодежная научная конференция «Все грани математики и механики» (25–28 апреля 2017 г.)
В сборнике представлены статьи, посвященные актуальным проблемам математики и механики, а также современным подходам и методам решения фундаментальных и прикладных задач. Для студентов, аспирантов, молодых ученых.
Методические указания к решению краевых задач для Уравнения теплопроводности методом Функций Грина
Пособие составлено в соответствии с тематикой практических занятий и программой курса «Математическая физика» для студентов физико-технического факультета направлений подготовки 16.03.01 – Техническая физика, 24.04.03 – Баллистика и гидроаэродинамика. Особое внимание уделяется аналитическому решению краевых задач для одномерного уравнения теплопроводности.
Задачи олимпиады 2015 года
Представлены задачи с решениями олимпиад по математике, кото рые прошли в Томском государственном университете в 2015 г. Ряд за дач являются авторскими. Многие задачи взяты из сборника избранных задач из журнала «American mathematical monthly» под редакцией В.М. Алексеева, а также из сборника «Избранные олимпиадные зада чи» Н.Б. Васильева, А.П. Савина и А.А. Егорова....
МЕРА ЛЕБЕГА-1. Теория и задачи
Для студентов 1-го и 2-го курсов ММФ ТГУ. Пособие содержит подробное изложение классической теории меры Лебега в евклидовом пространстве. Первая часть содержит построение меры Ле- бега – теорию, задачи, указания к решениям задач.
МЕРА ЛЕБЕГА-2. Теория и задачи
Для студентов 1-го и 2-го курсов ММФ ТГУ. Пособие является продолжением пособия «МЕРА ЛЕБЕГА-1. Теория и задачи», нумерация параграфов теории и задач продолжает нумерацию предыдущего пособия. В данном пособии подробное изложены свойства меры Лебега (§5) и приводится большое число примеров измеримых по Лебегу множеств (§6). Также приведено более ста задач к §5, 6 и...
Вычисление Собственных Чисел И Собственных Векторов Матриц, Решение Систем Линейных Алгебраических Уравнений
Данное издание представляет собой учебно-методическое пособие для выполнения лабораторных работ по курсу «Численные методы» студентами факультета прикладной математики и кибернетики Томского государственного университета и включает следующие разделы: - вычисление собственных чисел и собственных векторов матриц, - решение систем линейных алгебраических уравнений.
Практикум по теории вероятностей и математической статистике для экономистов . Часть 1
В настоящем практикуме приведены необходимые сведения из основ теории вероятностей, сопровождающиеся достаточно боль- шим количеством примеров. Большое внимание уделено задачам (в том числе экономическим), приводимым как с решениями, так и для самостоятельной работы. Практикум предназначен для студентов экономического факультета дневной формы обучения.
Задачи олимпиады 2016 года
В данной работе представлены задачи с решениями олимпиад по математике, которые прошли в Томском государственном университете в 2016 г. Ряд задач являются авторскими. Многие задачи взяты из сборника избранных задач из журнала «American mathematical monthly» под редакцией В.М. Алексеева, а также из сборника «Избранные олимпиадные задачи» Н.Б. Васильева, А.П. Савина...
Всероссийская молодежная научная конференция «Все грани математики и механики»
В сборнике представлены статьи, посвященные актуальным проблемам математики и механики, а также современным подходам и методам решения фундаментальных и прикладных задач. Для студентов, аспирантов, молодых ученых.
Школьные олимпиады СПбГУ 2018. Математика
В пособии представлены примеры заданий отборочного и заключительного этапов Олимпиады школьников СПбГУ по математике за 2017/18 учебный год. Все задачи сопровождаются подробными решениями; также даются общие методические указания с разбором типичных ошибок участников. Издание предназначено для подготовки к участию в Олимпиадах школьников СПбГУ.
Материалы первой всероссийской молодежной научной конференции «математическое и программное обеспечение информационных, технических и экономических систем»
Сборник содержит материалы Первой Всероссийской молодёжной научной конференции «Математическое и программное обеспечение информационных, технических и экономических систем», прошедшей 17–18 мая 2013 г. на базе факультета прикладной математики и кибернетики Томского государственного университета в рамках общеуниверситетских мероприятий, посвящённых 135-летию Томского...
Вверх