

Введение в теорию графов
Введение в теорию графов
Авторы: Князьков В.С., Волченская Т.В.
Издательство: Национальный Открытый Университет "ИНТУИТ"
Издание: 2-е изд.
2016 г.
Кол-во страниц: 76
О книге:
Приводятся начальные сведения о графах, основные понятия и определения, способы представления графов. Рассматриваются основные операции над графами, такие как - объединение, пересечение, кольцевая сумма, удаление вершины, удаление ребра, замыкание и стягивание. Даются понятия прямых и обратных отображений для орграфов различных порядков, прямого и обратного транзитивного замыкания, приводятся способы нахождения транзитивных замыканий по матрице смежности и обсуждаются вопросы достижимости для орграфов, способы нахождения матриц достижимости и контрдостижимости. Рассматриваются типы графов и подграфов, такие как -полный, симметрический, антисимметрический, двудольный, древовидный, планарный и их возможные комбинации. Дается теорема о двудольности графов. Рассматривается матричный способ нахождения количества путей между любыми вершинами графа, методы разбиения графов на сильно связные подграфы- метод Мальгранжа и матричный метод. Даются понятия веса и длины пути, сведения о орциклах и циклах и их особенностях. Рассматриваются метод Дейкстра нахождения кратчайших путей и методика построения базы для взвешенного графа.