X
Расширенный поиск
Все разделы
Корзина
у вас нет товаров

Год ( По возрастанию | По убыванию )

Книги

Сборник задач по математическому анализу. Том 2. Интегралы. Ряды. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И.

Сборник задач по математическому анализу. Том 2. Интегралы. Ряды.

Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Год: 2009. Издание: 2-е изд., перераб. и доп.
Книга является второй частью трехтомного сборника задач, созданного на основе многолетнего опыта преподавания курса математического анализа в Московском физико-техническом институте. В нее включен материал, относящийся к следующим разделам математического анализа: неопределенные интегралы, определенные интегралы, несобственные интегралы, числовые ряды, функциональные...
Математический анализ в задачах и упражнениях Злобина С.В., Посицельская Л.Н.

Математический анализ в задачах и упражнениях

Злобина С.В., Посицельская Л.Н. Год: 2009
Пособие написано на основе многолетнего опыта преподавания математического анализа в вузах и охватывает все разделы дифференциального и интегрального исчисления функций одной действительной переменной. По каждой теме даны краткие теоретические сведения и упражнения, решения задач, задачи для самостоятельной работы и задания для контрольных работ.Пособие предназначено...
Лекции по комплексному анализу Львовский С.М.

Лекции по комплексному анализу

Львовский С.М. Год: 2009. Издание: 2-е изд. стер.
Эта брошюра представляет собой расширенный вариант курса лекций, прочитанного автором на втором курсе Независимого московского университета в весеннем семестре 2002 года. Помимо традиционного материала, приведены сведения о компактных римановых поверхностях обсуждаются такие результаты, как теорема Римана–Роха и (отчасти) теорема Абеля, а в первом нетривиальном случае...
Асимптотические методы в анализе Ильин А.М., Данилин А.Р.

Асимптотические методы в анализе

Ильин А.М., Данилин А.Р. Год: 2009
В монографии систематически излагаются основные понятия и методы асимптотического анализа, как классические, так и разработанные в последнее время. Книга будет полезна студентам и аспирантам математических и технических специальностей, а также исследователям, столкнувшимся с асимптотическими проблемами.
Праздники в средней школе Лещинская В.В.

Праздники в средней школе

Лещинская В.В. Год: 2009
В книге представлены сценарии праздников, игры и викторины, фестивали и КВНы для учащихся средней школы.
Праздники для младших школьников Лещинская В.В.

Праздники для младших школьников

Лещинская В.В. Год: 2009
Праздники для младших школьников 1-4 класс. Сценарии, игры и конкурсы, стихи и загадки. "Дети должны жить в мире красоты, игры, сказки, музыки, рисунка, фантазии, творчества". В.А.Сухомлинский.
Методы интегрирования уравнений с частными производными Капцов О.В.

Методы интегрирования уравнений с частными производными

Капцов О.В. Год: 2009
В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных...
Лекции об уравнениях с частными производными Петровский И.Г.

Лекции об уравнениях с частными производными

Петровский И.Г. Год: 2009
Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические,...
Осцилляционный метод Штурма в спектральных задачах Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А.

Осцилляционный метод Штурма в спектральных задачах

Покорный Ю.В., Бахтина Ж.И., Зверева М.Б., Шабров С.А. Год: 2009
Книга посвящена изложению новых математических методов, развитых для доказательства осцилляционности спектра стилтьесовской струны. Главное направление развития классических методов — разработка математического анализа (на базе интеграла Стилтьеса) для функций с разрывным аргументом, аналогично — для функций с ветвящимся аргументом, определенных на геометрических графах....
Обыкновенные дифференциальные уравнения Треногин В.А.

Обыкновенные дифференциальные уравнения

Треногин В.А. Год: 2009
Книга содеpжит обновленный элементаpный начальный куpс обыкновенных диффеpенциальных уpавнений, соответствующий пpогpамме для технических вузов, утвеpжденной Министеpством образования и науки РФ. От дpугих книг этого же пpофиля данный учебник отличается повышенной пpикладной напpавленностью, в частности, применением компьютерных систем. Книга будет полезна студентам...
Лекции по теории обыкновенных дифференциальных уравнений Петровский И.Г.

Лекции по теории обыкновенных дифференциальных уравнений

Петровский И.Г. Год: 2009
Книга представляет собой учебник по курсу обыкновенных дифференциальных уравнений. Тщательно продуманное изложение дало возможность в небольшом объеме вместить обширный материал. Более детально и строго, чем в других руководствах, рассмотрены уравнения простых типов. Подробно изложены общие теоремы о разрешимости уравнений и систем уравнений с непрерывными правыми...
Компьютерные лабораторные работы по динамике Мельников В.Г., Иванов С.В., Мельников Г.И.

Компьютерные лабораторные работы по динамике

Мельников В.Г., Иванов С.В., Мельников Г.И. Год: 2009
В пособии излагаются методические рекомендации к выполнению компьютерных лабораторных работ по динамике. Пособие предназначено для студентов всех инженерных специальностей, изучающих курс «Прикладная механика».
Особенности дифференцируемых отображений Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М.

Особенности дифференцируемых отображений

Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М. Год: 2009. Издание: 3-е изд. стер.
Теория особенностей дифференцируемых отображений — бурно развивающаяся область современной математики, являющаяся грандиозным обобщением исследования функций на максимум и минимум и имеющая многочисленные приложения в математике, естествознании и технике (так называемые теории бифуркаций и катастроф). Первая часть книги посвящена теории устойчивости гладких отображений,...
Обратные задачи монодромии в аналитической теории дифференциальных уравнений Болибрух А.А.

Обратные задачи монодромии в аналитической теории дифференциальных уравнений

Болибрух А.А. Год: 2009
В лекциях начала аналитической теории дифференциальных уравнений излагаются с точки зрения расслоений с мероморфными связностями на римановой сфере. Этот подход позволяет добиться значительного прогресса в решении таких знаменитых старых задач, как проблема Римана–Гильберта и задача о биркгофовой стандартной форме, а также в исследовании изомонодромных деформаций фуксовых...
Конденсированные лазерные среды Пржевуский А.К., Никоноров Н.В.

Конденсированные лазерные среды

Пржевуский А.К., Никоноров Н.В. Год: 2009
Вверх