Расширенный поиск
Все разделы
Корзина
у вас нет товаров

Дифференциальные уравнения

Дифференциальные уравнения. Практикум Альсевич Л.А., Мазаник С.А., Расолько Г.А., Черенкова Л.П.

Дифференциальные уравнения. Практикум

Альсевич Л.А., Мазаник С.А., Расолько Г.А., Черенкова Л.П.
Даны краткие теоретические сведения и решения типовых задач. Задачи повышенной сложности сопровождаются указаниями. Приведено большое количество задач прикладного характера, снабженных необходимыми сведениями из соответствующих областей физики, механики, биологии, экономики. Приведены задания для контрольных и лабораторных работ.
Дифференциальные уравнения: то решаем, то рисуем Аносов Д.В.

Дифференциальные уравнения: то решаем, то рисуем

Аносов Д.В.
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других — как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых...
Геометрические методы в теории обыкновенных дифференциальных уравнений Арнольд В.И.

Геометрические методы в теории обыкновенных дифференциальных уравнений

Арнольд В.И.
В книге изложен ряд основных идей и методов, применяемых для исследованияобыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т.д.). Теорияуравненийс частнымипроизводными первогопорядка изложена на основе геометрии контактной...
Обыкновенные дифференциальные уравнения Арнольд В.И.

Обыкновенные дифференциальные уравнения

Арнольд В.И.
За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим.Большое внимание уделяется геометрическомусмыслу основных понятий. В книге прослеживается тесная связь предмета с приложениями, в особенности с механикой. При изложении делается упор не на формулы, а на геометрический смысл основных определений и теорем. Автор знакомит...
Особенности дифференцируемых отображений Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М.

Особенности дифференцируемых отображений

Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М.
Теория особенностей дифференцируемых отображений — бурно развивающаяся область современной математики, являющаяся грандиозным обобщением исследования функций на максимум и минимум и имеющая многочисленные приложения в математике, естествознании и технике (так называемые теории бифуркаций и катастроф). Первая часть книги посвящена теории устойчивости гладких отображений,...
Дифференциальные уравнения и экономические модели Березкина Н.С., Минюк С.А.

Дифференциальные уравнения и экономические модели

Березкина Н.С., Минюк С.А.
Изложены необходимые основы математического аппарата теории дифференциальных, линейных разностных уравнений и систем и даны примеры его использования в современных экономических приложениях. Представлены решения большого количества типичных задач, дана подборка задач для самостоятельного решения.
Курс обыкновенных дифференциальных уравнений Бибиков Ю. Н.

Курс обыкновенных дифференциальных уравнений

Бибиков Ю. Н.
Пособие содержит все традиционные разделы курса обыкновенных дифференциальных уравнений. Большое внимание уделено вопросам существования, единственности и продолжаемости решений, зависимости их от начальных данных и параметров. В теории линейных уравнений и систем дополнительно рассматриваются системы с периодическими коэффициентами, функция Грина краевой задачи. Излагаются...
Обратные задачи монодромии в аналитической теории дифференциальных уравнений Болибрух А.А.

Обратные задачи монодромии в аналитической теории дифференциальных уравнений

Болибрух А.А.
В лекциях начала аналитической теории дифференциальных уравнений излагаются с точки зрения расслоений с мероморфными связностями на римановой сфере. Этот подход позволяет добиться значительного прогресса в решении таких знаменитых старых задач, как проблема Римана–Гильберта и задача о биркгофовой стандартной форме, а также в исследовании изомонодромных деформаций фуксовых...
Практикум и индивидуальные задания по обыкновенным дифференциальным уравнениям (типовые расчеты) Болотюк В.А., Болотюк Л.А., Швед Е.А., Швец Ю.В.

Практикум и индивидуальные задания по обыкновенным дифференциальным уравнениям (типовые расчеты)

Болотюк В.А., Болотюк Л.А., Швед Е.А., Швец Ю.В.
Настоящий практикум представляет собой сборник индивидуальных заданий (типовых расчетов) из курса высшей математики по теме «Обыкновенные дифференциальные уравнения». Излагаемые основные понятия сопровождаются большим количеством примеров с подробными решениями. Практикум содержит индивидуальные задания по темам «Дифференциальные уравнения первого порядка», «Дифференциальные...
Типовой расчет: Функции многих переменных. Дифференциальные уравнения. 4 модуль Брагина О.И., Панкратова Т.Ф., Рябова А.В.

Типовой расчет: Функции многих переменных. Дифференциальные уравнения. 4 модуль

Брагина О.И., Панкратова Т.Ф., Рябова А.В.
Предлагаемое пособие предназначено для студентов технических специальностей первого курса.
Аппроксимация вещественными и комплексными минимальными сплайнами Бурова И.Г.

Аппроксимация вещественными и комплексными минимальными сплайнами

Бурова И.Г.
Предлагаемое издание содержит теоретические и практические рекомендации по аппроксимации функций вещественными и комплексными сплайнами. Предлагаются неявные интерполяционные методы для решения задачи Коши. Предназначено для студентов, изучающих вычислительную математику, а также аспирантов и научных сотрудников, применяющих численные методы.
Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах Васильева А.Б., Медведев Г.Н., Тихонов Н.А., Уразгильдина Т.А.

Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах

Васильева А.Б., Медведев Г.Н., Тихонов Н.А., Уразгильдина Т.А.
Пособие охватывает все разделы курсов «Дифференциальные и интегральные уравнения. Вариационное исчисление». По каждой теме кратко излагаются основные теоретические сведения приводятся решения стандартных и нестандартных задач даются задачи с ответами для самостоятельной работы. Для студентов вузов, обучающихся по специальностям «Физика» и «Прикладная математика».
Периодические системы дифференциальных уравнений с бесконечным множеством устойчивых периодических решений Васильева Е.В.

Периодические системы дифференциальных уравнений с бесконечным множеством устойчивых периодических решений

Васильева Е.В.
Монография посвящена проблеме существования бесконечного числа устойчивых периодических решений в окрестности гомоклинического решения периодической системы дифференциальных уравнений. Решенная автором работы весьма тонкая и сложная проблема существования в окрестности гомоклинического решения бесконечного числа устойчивых периодических решений с отделенными от нуля...
Практикум. Дифференциальные уравнения. В 2 частях. Часть 1. Дифференциальные уравнения первого порядка и приводящиеся к ним Веденяпин А.Д., Поливенко В.К.

Практикум. Дифференциальные уравнения. В 2 частях. Часть 1. Дифференциальные уравнения первого порядка и приводящиеся к ним

Веденяпин А.Д., Поливенко В.К.
Настоящий практикум содержит общие задания и методические указания к их выполнению в объеме программы по обыкновенным дифференциальным уравнениям университетов и технических вузов. Может служить руководством для преподавателей, ведущих практические и лабораторные занятия, а также для самостоятельного изучения студентом. Допущено Научно-методическим советом по математике...
Уравнение Смолуховского Галкин В.А.

Уравнение Смолуховского

Галкин В.А.
Изложена теория корректности задач для уравнения Смолуховского, моделирующего процессы коагуляции (слияния) частиц в дисперсных системах. Рассмотрены пространственно однородные и неоднородные задачи. Доказаны теоремы глобальной разрешимости и корректности задач Коши. Описываются эффекты перехода соотношения сохранения в соотношение диссипации и выявляются их связь...
Практикум по курсу Численные методы. Решение задачи Коши для системы ОДУ Даутов Р.З.

Практикум по курсу Численные методы. Решение задачи Коши для системы ОДУ

Даутов Р.З.
В пособии описываются методы Рунге-Купы приближенного решения задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ). Обсуждаются приемы программной реализации этих методов. Предлагается набор заданий для практических (лабораторных) занятий. Пособие рассчитано на студентов, знакомых с дифференциальными уравнениями и программированием
Программная реализация метода конечных элементов в МАТLАВ: учеб. пособие Даутов Р.З.

Программная реализация метода конечных элементов в МАТLАВ: учеб. пособие

Даутов Р.З.
В пособии описываются методы Рунге-Кутты приближенного решения задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ). Обсуждаются приемы программной реализации этих методов. Предлагается набор заданий для практических (лабораторных) занятий. Пособие рассчитано на студентов, знакомых с дифференциальными уравнениями и программированием
Лекции по математической теории устойчивости Демидович Б.П.

Лекции по математической теории устойчивости

Демидович Б.П.
В пособии излагаются основы теории устойчивости решений обыкновенных дифференциальных уравнений. Подробно рассмотрены первый и второй методы Ляпунова. Доказываются теоремы Ляпунова об устойчивости и другие классические результаты. Отдельная глава посвящена асимптотическому интегрированию дифференциальных уравнений. Приведены необходимые сведения из теории матриц. В...
Дифференциальные уравнения Демидович Б.П., Моденов В.П.

Дифференциальные уравнения

Демидович Б.П., Моденов В.П.
Учебное пособие рассчитано на студентов технических вузов. Написанная простым и ясным языком, она представляется полезной также лицам, занимающимся математикой самостоятельно. Предлагаемая читателям книга состоит их двух частей: в ее первой части рассматриваются основы теории обыкновенных дифференциальных уравнений, во второй — дифференциальные уравнения с частными...
Вверх